Background: Neonates, particularly those born preterm (PTB) and with low birthweight (LBW), are especially susceptible to bacterial and fungal infections that cause an estimated 225,000 deaths annually. Iron is a vital nutrient for the most common organisms causing septicaemia. Full-term babies elicit an immediate postnatal hypoferremia assumed to have evolved as an innate defence. We tested whether PTB and LBW babies are capable of the same response. Methods: We conducted an observational study of 152 babies who were either PTB (born 32 to <37 weeks gestational age) and/or LBW (<2500 g) (PTB/LBW) and 278 term, normal-weight babies (FTB/NBW). Blood was sampled from the umbilical cord vein and artery, and matched venous blood samples were taken from all neonates between 6À24 h after delivery. We measured haematological, iron and inflammatory markers. Findings: In both PTB/LBW and FTB/NBW babies, serum iron decreased 3-fold within 12 h of delivery compared to umbilical blood (7¢5 § 4¢5 vs 23¢3 § 7¢1 ng/ml, P < 0¢001, n = 425). Transferrin saturation showed a similar decline with a consequent increase in unsaturated iron-binding capacity. C-reactive protein levels increased over 10-fold (P < 0¢001) and hepcidin levels doubled (P < 0¢001). There was no difference in any of these responses between PTB/LBW and FTB/NBW babies. Interpretation: Premature or low birthweight babies are able to mount a very rapid hypoferremia that is indistinguishable from that in normal term babies. The data suggest that this is a hepcidin-mediated response triggered by acute inflammation at birth, and likely to have evolved as an innate immune response against bacterial and fungal septicaemia. Trial registration: clinicaltrials.gov (NCT03353051). Registration date: November 27, 2017. Funding: Bill & Melinda Gates Foundation (OPP1152353).
Background: Neonatal infection is the third largest cause of death in children under five worldwide. Nutritional immunity is the process by which the host innate immune system limits nutrient availability to invading organisms. Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Our previously published data shows that, during the first 24 hours of life, full-term neonates have reduced overall serum iron. Transferrin saturation decreases rapidly from 45% in cord blood to ~20% by six hours post-delivery. Methods: To study neonatal nutritional immunity and its role in neonatal susceptibility to infection, we will conduct an observational study on 300 full-term normal birth weight (FTB+NBW), 50 preterm normal birth weight (PTB+NBW), 50 preterm low birth weight (PTB+LBW) and 50 full-term low birth weight (FTB+LBW), vaginally-delivered neonates born at Kanifing General Hospital, The Gambia. We will characterize and quantify iron-related nutritional immunity during the early neonatal period and use ex vivo sentinel bacterial growth assays to assess how differences in serum iron affect bacterial growth. Blood samples will be collected from the umbilical cord (arterial and venous) and at serial time points from the neonates over the first week of life. Discussion: Currently, little is known about nutritional immunity in neonates. In this study, we will increase understanding of how nutritional immunity may protect neonates from infection during the first critical days of life by limiting the pathogenicity and virulence of neonatal sepsis causing organisms by reducing the availability of iron. Additionally, we will investigate the hypothesis that this protective mechanism may not be activated in preterm and low birth weight neonates, potentially putting these babies at an enhanced risk of neonatal infection. Trial registration: clinicaltrials.gov ( NCT03353051) 27/11/2017
Background: Neonatal infection is the third largest cause of death in children under five worldwide. Nutritional immunity is the process by which the host innate immune system limits nutrient availability to invading organisms. Iron is an essential micronutrient for both microbial pathogens and their mammalian hosts. Changes in iron availability and distribution have significant effects on pathogen virulence and on the immune response to infection. Our previously published data shows that, during the first 24 hours of life, full-term neonates have reduced overall serum iron. Transferrin saturation decreases rapidly from 45% in cord blood to ~20% by six hours post-delivery. Methods: To study neonatal nutritional immunity and its role in neonatal susceptibility to infection, we will conduct an observational study on 300 full-term normal birth weight (FTB+NBW), 50 preterm normal birth weight (PTB+NBW), 50 preterm low birth weight (PTB+LBW) and 50 full-term low birth weight (FTB+LBW), vaginally-delivered neonates born at Kanifing General Hospital, The Gambia. We will characterize and quantify iron-related nutritional immunity during the early neonatal period and use ex vivo sentinel bacterial growth assays to assess how differences in serum iron affect bacterial growth. Blood samples will be collected from the umbilical cord (arterial and venous) and at serial time points from the neonates over the first week of life. Discussion: Currently, little is known about nutritional immunity in neonates. In this study, we will increase understanding of how nutritional immunity may protect neonates from infection during the first critical days of life by limiting the pathogenicity and virulence of neonatal sepsis causing organisms by reducing the availability of iron. Additionally, we will investigate the hypothesis that this protective mechanism may not be activated in preterm and low birth weight neonates, potentially putting these babies at an enhanced risk of neonatal infection. Trial registration: clinicaltrials.gov (NCT03353051) 27/11/2017
Human neonates elicit a profound hypoferremia which may protect against bacterial sepsis. We examined the transience of this hypoferremia by measuring iron and its chaperone proteins, inflammatory and haematological parameters over the first post-partum week. We prospectively studied term, normal weight Gambian newborns. Umbilical cord vein and artery, and serial venous blood samples up to day 7 were collected. Hepcidin, serum iron, transferrin, transferrin saturation, haptoglobin, c-reactive protein, α1-acid-glycoprotein, soluble transferrin receptor, ferritin, unbound iron-binding capacity and full blood count were assayed. In 278 neonates we confirmed the profound early postnatal decrease in serum iron (22.7 ± 7.0 µmol/L at birth to 7.3 ± 4.6 µmol/L during the first 6–24 h after birth) and transferrin saturation (50.2 ± 16.7% to 14.4 ± 6.1%). Both variables increased steadily to reach 16.5 ± 3.9 µmol/L and 36.6 ± 9.2% at day 7. Hepcidin increased rapidly during the first 24 h of life (19.4 ± 14.4 ng/ml to 38.9 ± 23.9 ng/ml) and then dipped (32.7 ± 18.4 ng/ml) before rising again at one week after birth (45.2 ± 19.1 ng/ml). Inflammatory markers increased during the first week of life. The acute postnatal hypoferremia in human neonates on the first day of life is highly reproducible but transient. The rise in serum iron during the first week of life occurs despite very high hepcidin levels indicating partial hepcidin resistance.Trial Registration: clinicaltrials.gov (NCT03353051). Registration date: November 27, 2017.
Background A barrier to achieving first trimester antenatal care (ANC) attendance in many countries has been the widespread cultural practice of not discussing pregnancies in the early stages. Motivations for concealing pregnancy bear further study, as the interventions necessary to encourage early ANC attendance may be more complicated than targeting infrastructural barriers to ANC attendance such as transportation, time, and cost. Methods Five focus groups with a total of 30 married, pregnant women were conducted to assess the feasibility of conducting a randomised controlled trial to evaluate the effectiveness of early initiation of physical activity and/or yoghurt consumption in reducing Gestational Diabetes Mellitus in pregnant women in The Gambia. Focus group transcripts were coded through a thematic analysis approach, assessing themes as they arose in relation to failure to attend early ANC. Results Two reasons for the concealment of pregnancies in the first trimester or ahead of a pregnancy’s obvious visibility to others were given by focus group participants. These were ‘pregnancy outside of marriage’ and ‘evil spirits and miscarriage.’ Concealment on both grounds was motivated through specific worries and fears. In the case of a pregnancy outside of marriage, this was worry over social stigma and shame. Evil spirits were widely considered to be a cause of early miscarriage, and as such, women may choose to conceal their pregnancies in the early stages as a form of protection. Conclusion Women’s lived experiences of evil spirits have been under-explored in qualitative health research as they relate specifically to women’s access to early antenatal care. Better understanding of how such sprits are experienced and why some women perceive themselves as vulnerable to related spiritual attacks may help healthcare workers or community health workers to identify in a timely manner the women most likely to fear such situations and spirits and subsequently conceal their pregnancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.