Preprocessing of functional MRI (fMRI) involves numerous steps to clean and standardize data before statistical analysis. Generally, researchers create ad-hoc preprocessing workflows for each new dataset, building upon a large inventory of tools available. The complexity of these workflows has snowballed with rapid advances in acquisition and processing. We introduce fMRIPrep , an analysis-agnostic tool that addresses the challenge of robust and reproducible preprocessing for fMRI data. FMRIPrep automatically adapts a best-in-breed workflow to the idiosyncrasies of virtually any dataset, ensuring high-quality preprocessing with no manual intervention. By introducing visual assessment checkpoints into an iterative integration framework for software-testing, we show that fMRIPrep robustly produces high-quality results on a diverse fMRI data collection. Additionally, fMRIPrep introduces less uncontrolled spatial smoothness than commonly used preprocessing tools. FMRIPrep equips neuroscientists with a high-quality, robust, easy-to-use and transparent preprocessing workflow, which can help ensure the validity of inference and the interpretability of their results.
Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations.
Preprocessing of functional MRI (fMRI) involves numerous steps to clean and standardize data 24Preprocessing of fMRI in a nutshell, for a summary). Extracting a signal that is most faithful to the 25 underlying neural activity is crucial to ensure the validity of inference and interpretability of results 6 .
Quality control of MRI is essential for excluding problematic acquisitions and avoiding bias in subsequent image processing and analysis. Visual inspection is subjective and impractical for large scale datasets. Although automated quality assessments have been demonstrated on single-site datasets, it is unclear that solutions can generalize to unseen data acquired at new sites. Here, we introduce the MRI Quality Control tool (MRIQC), a tool for extracting quality measures and fitting a binary (accept/exclude) classifier. Our tool can be run both locally and as a free online service via the OpenNeuro.org portal. The classifier is trained on a publicly available, multi-site dataset (17 sites, N = 1102). We perform model selection evaluating different normalization and feature exclusion approaches aimed at maximizing across-site generalization and estimate an accuracy of 76%±13% on new sites, using leave-one-site-out cross-validation. We confirm that result on a held-out dataset (2 sites, N = 265) also obtaining a 76% accuracy. Even though the performance of the trained classifier is statistically above chance, we show that it is susceptible to site effects and unable to account for artifacts specific to new sites. MRIQC performs with high accuracy in intra-site prediction, but performance on unseen sites leaves space for improvement which might require more labeled data and new approaches to the between-site variability. Overcoming these limitations is crucial for a more objective quality assessment of neuroimaging data, and to enable the analysis of extremely large and multi-site samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.