<span>Breast cancer remains one of the major causes of cancer deaths among women. For decades, screening mammography has been one of the most common methods for early cancer detection and diagnosis. Digital mammography images are created by applying a small burst of x-rays that pass through the breast to a solid-state detector, which transmits the electronic signals to a computer to form a digital image. However, due to projection, some mass areas may be partially covered, which makes them difficult to be interprated. This paper addresses the issue of potential mass regions being distorted by other normal breast tissues, which will negatively affect some of the features being extracted from the mass and in turn deteriorate the classification accuracy. The goal was to estimate the overlapped parts of the mass border using Euclidean distance in order to give more accurate results in next stages. The presented method achieved 95.744% region sensitivity at 0.333 False Positive per Image (FPI), outperforming other researches in this branch of mammography analysis.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.