One of the problems of optimization of concrete is to formulate a mathematical equation that shows the relationship between the various constituents of concrete and its properties. In this work, modelling of the compressive strength of concrete admixed with metakaolin was carried out using the Gene Expression Programming (GEP) algorithm. The dataset from laboratory experimentation was used for the analysis. The mixture proportions were made of three different water/binder ratios (0.4, 0.5, and 0.6), and the grades of concrete produced were grade M15 and M20. The compressive strength of the concrete was determined after 28 days of curing. The parameters used in the GEP algorithm are the input variables which include cement content, water, metakaolin content, and fine and coarse aggregate, while the response was designated as the compressive strength. The model was trained and tested using the parameters. The R-square value from the GEP algorithm was compared with the use of conventional stepwise regression analysis. With a coefficient of determination (R-square value) of 0.95, the GEP algorithm has shown to be a good alternative for modelling concrete compressive strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.