Rosemary (Rosmarinus officinalis L.) is a plant worldwide cultivated mainly for essential oils, extracts, and as a spice. Up-to-date results showed diversity in composition of the essential oils, which may influence their quality, biological activity, and thermal properties. Therefore, the aim of this study was to investigate the chemical composition, antimicrobial activity, and thermal properties of the rosemary essential oils originating from Serbia and Russia. Additionally, oils were added to the sunflower oils in order to investigate possible antioxidant activity during the frying. Investigation of the chemical profile marked α-pinene, eucalyptol, and camphor as the most abundant compounds in both oils. However, overall composition influenced in such manner that Russian oil showed significantly higher antimicrobial activity, while Serbian oil proved to be better antioxidant agent in case of frying of sunflower oil. This would significantly influence possible application of the oils, which could be used as an antioxidant agent for extension of the food shelf life, or antimicrobial agent for protection against different microbial strains.
Article Highlights• A novel aerobic denitrifier, P. stutzeri D1 was isolated • P. stutzeri D1 has great capability to fully reduce 3g/L of nitrate in aerobic conditions• The optimal conditions for biomass scale-up was determined• The scale-up of biomass production of P. stutzeri ATCC 17588 and D1 strain was performed Abstract An aerobic denitrifier was newly isolated and identified by VITEK ® 2 Compact System and MALDI-TOF MS as P. stutzeri strain D1. Sequence amplification indicates that the denitrification genes napA, nirS, norB and nosZ are present in a novel strain D1, as well as in reference strain ATCC 17588. Strain D1 had capability to fully remove 3 g/L of nitrate (as KNO 3 ) in 48 h, while the reference strain completed this task in 60 h. Single factor experiments indicate that the optimal conditions for biomass production were: temperature of 30 °C, pH value of 7 and inoculum volume of 5 vol.%. Scaling up of biomass production of both denitrifiers was successfully performed in 3 and 7 L laboratory bioreactors by reaching 9 log CFU/mL of the viable cells. The results demonstrate the feasibility of using investigated P. stutzeri strains in denitrification processes and the simplicity of the up-scaling of biomass production for the treatment of large areas contaminated with nitrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.