The European Decision EU 2015/495 included three steroidal estrogens, estrone, 17-estradiol and 17ethinyl estradiol, in the "watch-list" of the Water Framework Directive (WFD). As consequence, these substances have to be chemically monitored at the level of their environmental quality standards, which can be challenging. This project aimed to identify reliable effect-based methods (EBMs) for screening of endocrine disrupting compounds, to harmonise monitoring and data interpretation methods, and to contribute to the current WFD review process. Water and wastewater samples were collected across Europe and analysed using chemical analyses and EBMs. The results showed that 17-estradiol equivalents were comparable among methods, while results can vary between methods based on the relative potencies for individual substances. Further, derived 17-estradiol equivalents were highly correlated with LC-MS/MS analyses. This study shows that the inclusion of effect-based screening methods into monitoring programmes for estrogens in surface waterbodies would be a valuable complement to chemical analysis.
European Union Directive 2013/39/EU, which amended and updated the Water Framework Directive (WFD; 2000/60/EC) and its daughter directive (2008/105/EC), sets Environmental Quality Standards for biota (EQS biota ) for a number of bioaccumulative chemicals. These chemicals pose a threat to both aquatic wildlife and human health via the consumption of contaminated prey or the intake of contaminated food originating from the aquatic environment. EU member states will need to establish programs to monitor the concentration of 11 priority substances in biota and assess compliance against these new standards for the classification of surface water bodies. An EU-wide guidance effectively addresses the implementation of EQS biota . Flexibility is allowed in the choice of target species used for monitoring to account for both diversity of habitats and aquatic community composition across Europe. According to that guidance, the consistency and comparability of monitoring data across member states should be enhanced by adjusting the data on biota contaminant concentrations to a standard trophic level by use of the appropriate trophic magnification factor (TMF), a metric of contaminant biomagnification through the food web. In this context, the selection of a TMF value for a given substance is a critical issue, because this field-derived measure of trophic magnification can show variability related to the characteristics of ecosystems, the biology and ecology of organisms, the experimental design, and the statistical methods used for TMF calculation. This paper provides general practical advice and guidance for the selection or determination of TMFs for reliable application within the context of the WFD (i.e., adjustment of monitoring data and EQS derivation). Based on a series of quality attributes for TMFs, a decision tree is presented to help end users select a reasonable and relevant TMF. Integr Environ Assess Manag 2019;15:266-277. C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.