The aim of the present work was to determine if noradrenergic neurons of the anterior and the posterior subregions of the locus coeruleus exhibit a difference in reactivity in response to sodium nitroprusside-induced arterial hypotension, and if the pharmacological induction of tyrosine hydroxylase by RU24722 modifies the reactivity of locus coeruleus neurons to this hypotensive stimulus. Previous findings have demonstrated that administration of RU24722 increases the concentration of tyrosine hydroxylase in the rat locus coeruleus by two different mechanisms in the anterior and in the posterior locus coeruleus subregions. The goal of the present study was to measure in vivo the changes in catecholaminergic metabolism in the locus coeruleus after treatment with RU24722 using differential normal pulse voltammetry (DNPV). In vehicle-treated rats, arterial hypotension increased catecholaminergic metabolism with the same pattern in the two locus coeruleus subregions. However, the changes in the magnitude of the catechol oxidation current throughout the recording period were significantly smaller in the posterior subregion (P < 0.001). In the RU24722-pretreated rats, there was a 39% increase in tyrosine hydroxylase and dihydroxyphenylacetic acid in the locus coeruleus. The functional reactivity to hypotension measured by DNPV was significantly decreased (P < 0.001) in both the anterior and posterior locus coeruleus subregions with RU24722 treatment. Therefore, this study suggests that the response of locus coeruleus cells to a hypotensive stimulus depends upon the intracellular tyrosine hydroxylase concentration both in the basal condition and during pharmacological induction of tyrosine hydroxylase gene expression.
Recent data have indicated that the long-lasting increase in tyrosine hydroxylase (TH) protein could be differently expressed in the anterior and posterior locus coeruleus (LC) after a single intraperitoneal injection of RU24722, which has been proposed as a potent activator of catecholaminergic systems. In the present study, we have evaluated the dose and time course responses and the effect of a repeated treatment with RU24722 at 3-day intervals on TH protein level in the anterior and posterior rat LC. The results showed that RU24722 induces a long-lasting increase of TH protein level in the anterior and posterior LC that was maximal 3 days following a single injection of 30 mg/kg. The increase in TH protein was maintained at a constant level after repeated administrations of RU24722 at 3-day intervals. Furthermore, we have investigated whether the effect of the drug on TH protein could be modulated via several hormonal systems. The long-term increase of TH steady-state content after RU24722 was still observed 15 days after castration, adrenalectomy, hypophysectomy, and thyroidectomy. The initial steady-state TH protein level was significantly higher in the anterior LC of thyroid- or hypophysectomized and in the posterior LC of hypophysectomized rats. However, this increase was reversed when animals were housed at 28 degrees C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.