Breast cancer progression is strongly linked to inflammatory processes, aggravating disease course. The impacts of the inflammatory cytokine TNFα on breast malignancy are not fully substantiated, and they may be affected by cooperativity between TNFα and other protumoral mediators. Here, we show that together with representatives of other important arms of the tumor microenvironment, estrogen (hormonal) and EGF (growth-supporting), TNFα potently induced metastasis-related properties and functions in luminal breast tumor cells, representing the most common type of breast cancer. Jointly, TNFα + Estrogen + EGF had a stronger effect on breast cancer cells than each element alone, leading to the following: (1) extensive cell spreading and formation of FAK/paxillin-enriched cellular protrusions; (2) elevated proportion of tumor cells coexpressing high levels of CD44 and β1 and VLA6; (3) EMT and cell migration; (4) resistance to chemotherapy; (5) release of protumoral factors (CXCL8, CCL2, MMPs). Importantly, the tumor cells used in this study are known to be nonmetastatic under all conditions; nevertheless, they have acquired high metastasizing abilities in vivo in mice, following a brief stimulation by TNFα + Estrogen + EGF. These dramatic findings indicate that TNFα can turn into a strong prometastatic factor, suggesting a paradigm shift in which clinically approved inhibitors of TNFα would be applied in breast cancer therapy.
Cancers often display gene expression profiles resembling those of undifferentiated cells. The mechanisms controlling these expression programs have yet to be identified. Exploring transcriptional enhancers throughout hematopoietic cell development and derived cancers, we uncovered a novel class of regulatory epigenetic mutations. These epimutations are particularly enriched in a group of enhancers, designated ES-specific enhancers (ESSEs) of the hematopoietic cell lineage. We found that hematopoietic ESSEs are prone to DNA methylation changes, indicative of their chromatin activity states. Strikingly, ESSE methylation is associated with gene transcriptional activity in cancer. Methylated ESSEs are hypermethylated in cancer relative to normal somatic cells and co-localized with silenced genes, whereas unmethylated ESSEs tend to be hypomethylated in cancer and associated with reactivated genes. Constitutive or hematopoietic stem cell-specific enhancers do not show these trends, suggesting selective reactivation of ESSEs in cancer. Further analyses of a hypomethylated ESSE downstream to the VEGFA gene revealed a novel regulatory circuit affecting VEGFA transcript levels across cancers and patients. We suggest that the discovered enhancer sites provide a framework for reactivation of ES genes in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.