Future exascale systems, formed by millions of cores, will present high failure rates, and long-running applications will need to make use of new fault tolerance techniques to ensure the successful execution completion. The Fault Tolerance Working Group, within the MPI forum, has presented the ULFM (User Level Failure Mitigation) proposal, providing new functionalities for the implementation of resilient MPI applications. In this work, the CPPC checkpointing framework is extended to exploit the new ULFM functionalities. The proposed solution transparently obtains resilient MPI applications by instrumenting the original application code. Besides, a multithreaded multilevel checkpointing, in which the checkpoint files are saved in different memory levels, improves the scalability of the solution. The experimental evaluation shows a low overhead when tolerating failures in one or several MPI processes.
The growth in the number of computational resources used by high-performance computing (HPC) systems leads to an increase in failure rates. Fault-tolerant techniques will become essential for long-running applications executing in future exascale systems, not only to ensure the completion of their execution in these systems but also to improve their energy consumption. Although the Message Passing Interface (MPI) is the most popular programming model for distributed-memory HPC systems, as of now, it does not provide any fault-tolerant construct for users to handle failures. Thus, the recovery procedure is postponed until the application is aborted and re-spawned. The proposal of the User Level Failure Mitigation (ULFM) interface in the MPI forum provides new opportunities in this field, enabling the implementation of resilient MPI applications, system runtimes, and programming language constructs able to detect and react to failures without aborting their execution. This paper presents a global overview of the resilience interfaces provided by the ULFM specification, covers archetypal usage patterns and building blocks, and surveys the wide variety of application-driven solutions that have exploited them in recent years. The large and varied number of approaches in the literature proves that ULFM provides the necessary flexibility to implement efficient faulttolerant MPI applications. All the proposed solutions are based on application-driven recovery mechanisms, which allows reducing the overhead and obtaining the required level of efficiency needed in the future exascale platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.