The recycling of waste materials in wastewater decontamination has been an attractive discipline in zero discharge and energy recovery. Biochar/zeolite nanocomposite has been successfully synthesized as a cheap and eco-friendly material from a solid fraction obtained from the thermos-catalytic conversion of green pea agriculture waste (Pisum sativum). A dark-whitish solid was obtained from thermal pyrolysis at 450 °C with a heating rate of 27 °C/min for 15 min that was further subjected to alkaline chemical activation. The synthesized composites have been examined using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), transmission emission microscopy (TEM), and Brunauer-Emmet-Teller (BET) analyses. The successful preparation of biochar/zeolite nanocomposite was evident from characterization results with an average particle size of 30–40 nm with a high surface area of 15.3 m2/g. The material was evaluated as an eco-friendly adsorbent for decolorization of both cationic methylene blue dye (MB) and Congo red anionic dye (CR) using the batch technique. The influence of dosage, pH, temperature, initial dye concentration, and contact time were studied against the dye adsorption process. It was indicated that the material recorded maximum dye decolorization efficiencies of 87.5% at pH of 12 and 84.1% at pH of 2 for MB and CR, respectively. The optimum material dosage and contact time for dye decolorization were 5 g/l and 60 min, respectively. Thermodynamic parameters were calculated from the sorption process and revealed a negative charge of Gibbs free energy ($${\Delta G}^{o}$$
Δ
G
o
) an indication of spontaneity and thermodynamic favorability. Positive enthalpy and entropy demonstrated the endothermic behavior and the disorderliness. Equilibrium adsorption results best fitted to the Langmuir isotherm model, while MB and CR adsorption kinetics were pseudo-second-order reactions.
Methylene blue (MB), a deleterious dye with consequential environmental implications is used in dyeing processes. Precipitation, electrolysis, coagulation and adsorption are used to counter its effect. In this study, batch adsorption technique was performed to study the decolorization of methylene blue by high carbon composite obtained from catalytic pyrolysis of green pea peels. Characterizations of carbon composite by XRF revealed metal oxides beneficial for adsorption; FTIR clearly distinguished the location of intensity and shape before and after MB uptake. The PHPZC was 7.3. Dosage, pH, and initial concentration were influential in removal performances of MB. Equilibrium data fitted the Langmuir model with an uptake capacity of 526.32 mg/g and RL of 0.4814, exhibiting a monolayer and favorable adsorption process.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.