Abstract. The implementation of stable isotope applications in official food analyses began in 1990. At that time the first method to detect sucrose from sugar beet or sugar cane in wine by Deuterium-Nuclear Magnetic Resonance ( 2 H-NMR) of ethanol, also known as SNIF-NMR ® -Method became adopted officially by the European Commission. This was a milestone for an improved authentication of wines and other food stuffs. In connection with methods using Isotope Ratio Mass Spectrometry (IRMS), stable isotope ratio analysis is one of the most powerful analytical tools for authentication of wine. The fundamentals of biotic and abiotic stable isotope fractionation and the analytical methods which are used in authentication of wine are summarized. Principles of authentication of some wine constituents like sugar, ethanol, organic acids, glycerol, and carbon dioxide as well as proof of geographic origin are reviewed. By selected example of anonymized cases, proof of adulterations (e.g. chaptalization, addition of water or mislabeling) using monovariate, bivariate, and multivariate data evaluations are discussed. It is shown that for this purpose databanks are generally indispensable. In their absence cut-off values, derived from long-term observations help to detect clear adulterations.
This study describes the approach of (1)H NMR profiling for the authentication of organically produced tomatoes (Solanum lycopersicum). Overall, 361 tomato samples of two different cultivars and four different producers were regularly analyzed during a 7 month period. The results of principal component analysis showed a significant trend for the separation between organically and conventionally produced tomatoes (p < 0.001 using the t test). Linear discriminant analysis demonstrated good discrimination between the growing regimens, and external validation showed 100% correctly classified tomato samples. Further validation studies, however, also disclosed unexpected differences between individual producers, which interfere with the aim of predicting the cultivation method, yet the results indicate significant differences between (1)H NMR spectra of organically and conventionally grown tomatoes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.