Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal-organic framework, MIL-101, without aggregation of Pt nanoparticles on the external surfaces of framework by using a "double solvents" method. TEM and electron tomographic measurements clearly demonstrated the uniform three-dimensional distribution of the ultrafine Pt NPs throughout the interior cavities of MIL-101. The resulting Pt@MIL-101 composites represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis, solid-phase ammonia borane thermal dehydrogenation, and gas-phase CO oxidation.
Molecules that contain boron-boron multiple bonds are extremely rare due to the electron-deficient nature of boron. Here we report experimental and theoretical evidence of a neutral OCBBCO molecule with some boron-boron triple bond character. The molecule was produced and unambiguously characterized by matrix isolation infrared spectroscopy. Quantum chemical calculations indicate that the molecule has a linear singlet ground state with a very short boron-boron bond length.
Quasi-MOFs'' realize both an open-framework structure and a strong interaction with the guest metal nanoparticles (NPs). Through controlled deligandation of metal-NP/MOF composites, metal-NP/quasi-MOF composites can be fabricated, leading to dramatically enhanced catalytic performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.