Regulation of intracellular pH (pH(i)) and H(+) efflux were investigated in Trypanosoma brucei bloodstream and procyclic trypomastigotes using the fluorescent dyes 2', 7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) acetoxymethyl ester and free BCECF respectively. pH(i) in bloodstream and procyclic trypomastigotes was 7.47+/-0.06 and 7. 53+/-0.07 respectively. Differences in the mechanisms for the regulation of pH(i) were noted between bloodstream and procyclic forms. Procyclic trypomastigotes maintained their pH(i) at neutral over a wide range of external pH values from 6 to 8, and in the absence of K(+) or Na(+). The H(+)-ATPase inhibitors N, N'-dicyclohexylcarbodi-imide (DCCD), diethylstilboestrol and N-ethylmaleimide substantially decreased the steady-state pH(i) and inhibited its recovery from acidification. The rate of H(+) efflux in these forms was determined to be 62+/-6.5 nmol/min per mg of protein, and was substantially decreased by H(+)-ATPase inhibitors. The data support the presence of an H(+)-ATPase as the major regulator of pH(i) in procyclic trypomastigotes. In contrast, bloodstream trypomastigotes were unable to maintain a neutral pH under acidic conditions, and their steady-state pH(i) and recovery from acidification were unaffected by H(+)-ATPase inhibitors, except for DCCD (100 microM). Their steady-state pH(i) was markedly decreased in glucose-free buffer or by >/=10 mM pyruvate, whereas procyclic trypomastigotes were unaffected by similar treatments. The rate of H(+) efflux in bloodstream trypomastigotes was 534+/-38 nmol/min per mg of protein, and was decreased in the absence of glucose and by the addition of pyruvate or DCCD. Pyruvate efflux in these forms was calculated to be 499+/-34 nmol/min per mg of protein, and was significantly inhibited by DCCD, 4, 4'-di-isothiocyanatodihydrostilbene-2,2'-disulphonic acid and alpha-cyanohydroxycinnamic acid. The pyruvate analogues beta-hydroxypyruvate, 3-bromopyruvate, 3-oxoglutarate, oxaloacetate, 3-oxoisovalerate and 3-oxoisohexanoate significantly decreased pH(i), as well as proton and pyruvate efflux, whereas lactate had only a small effect, and no effect was observed with citrate or fumarate. The inhibition by pyruvate analogues of pyruvate efflux, proton efflux and acidification of pH(i) supports the hypothesis that pyruvate efflux is accompanied by proton efflux and that this is the major pH(i) control mechanism in bloodstream forms. Inhibition by H(+)-ATPase inhibitors of residual H(+) efflux in the absence of glucose or in the presence of high extracellular pyruvate indicates a minor role for H(+)-ATPase(s) in control of pH(i) in bloodstream forms.
Cytoplasmic pH (pHi) regulation was studied in Trypanosoma cruzi epimastigotes using fluorescent probes. Steady-state pHi was maintained even in the absence of extracellular Na+ or K+, but was significantly decreased in the absence of Cl-. Acid-loaded epimastigotes regained normal pHi by a process that was ATP-dependent and sensitive to N-ethylmaleimide, dicyclohexyl-carbodi-imide and diethylstiboestrol, suggesting involvement of a H(+)-pumping ATPase. Recovery from an acid load was independent of extracellular Na+ or K+ and insensitive to omeprazole, vanadate and low concentrations of bafilomycin A1. Using the fluorescent probe bisoxonol to measure the membrane potential of intact cells, acid loading of epimastigotes was shown to result in a dicyclohexylcarbodi-imide-sensitive hyperpolarization, which suggests electrogenic pumping of protons across the plasma membrane. Addition of glucose, but not of 6-deoxyglucose, produced a transient cellular acidification of possible metabolic origin, and increased the rate of recovery from an acid load. Taken together, these results are consistent with an important role of a H(+)-ATPase in the regulation of pHi homoeostasis in T. cruzi.
Acid-loaded Trypanosoma cruzi amastigotes and trypomastigotes regained normal cytoplasmic pH (pHi), as measured in cells loaded with 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF), by a process that was sensitive to bafilomycin A1 at concentrations comparable to those that inhibited vacuolar (V) H+-ATPases from different sources. Steady-state pHi was also decreased by similar concentrations of bafilomycin A1 in a concentration-dependent manner. The efflux of H+ equivalents from amastigotes and trypomastigotes was measured by following changes in the fluorescence of extracellular BCECF. Basal H+ extrusion in the presence of glucose was 15.4+/-2.8 (S.D.) nmol of H+/min per 10(8) amastigotes and 6. 37+/-0.8 nmol of H+/min per 10(8) trypomastigotes. Bafilomycin A1 treatment significantly decreased the efflux of H+ equivalents by amastigotes (8.9+/-2.2 nmol of H+/min per 10(8) cells), but not by trypomastigotes (5.1+/-1.7 nmol of H+/min per 10(8) cells). The localization of the V-H+-ATPase of T. cruzi was investigated by immunocytochemistry. Confocal and electron microscopy indicated that, in addition to being located in cytoplasmic vacuoles, the V-H+-ATPase of different stages of T. cruzi is also located in the plasma membrane. However, no labelling was detected in the plasma membrane lining the flagellar pocket of the different developmental stages. Surface localization of the V-H+-ATPase was confirmed by experiments involving the biotinylation of cell surface proteins and immunoprecipitation with antibodies against the V-H+-ATPase. Taken together, the results are consistent with the presence of a functional V-H+-ATPase in the plasma membrane of amastigotes and with an important role for intracellular acidic compartments in the maintenance of pHi in different stages of T. cruzi.
Pneumocystis carinii is an opportunistic fungus which causes interstitial pneumonia in patients with acquired immunodeficiency syndrome (AIDS). Cytoplasmic pH (pHi) regulation in short-term-cultured P. carinii trophozoites was studied using the fluorescent dye 2',7'-bis-(2-carboxyethyl)-5-(-6)-carboxyfluorescein. With an extracellular pH of 7.4, the mean baseline pHi of P. carinii trophozoites was 7.40 +/- 0.10 (n = 8). This steady-state pHi was not significantly affected in the absence of extracellular Na+ or K+. Moreover, steady-state pHi was maintained in the nominal absence of HCO3- and was not affected by the Cl-/HCO(3-)-exchanger inhibitor 4, 4'-di-isothiocyanato-dihydrostilbene-2, 2'-disulphonic acid (100 microM), or the Na+/H(+)-exchanger inhibitor N-ethyl-N-isopropylamiloride (100 microM). In contrast, the general inhibitors of ATPases, N-ethylmaleimide (1 mM), and dicyclohexylcarbodi-imide (100 microM), and the inhibitor of yeast H(+)-ATPase, diethylstilbestrol (12.5-100 microM), decreased pHi, while the K+/H(+)-ATPase inhibitor omeprazole (50-400 microM), and the vacuolar-type H(+)-ATPase inhibitor bafilomycin A1 (1-5 microM) only produced a dose-dependent acidification of the cells when used at high concentrations. In addition, steady-state pHi depended on the availability of cellular ATP, since it was decreased by the ATP synthase inhibitors oligomycin (1 microgram/ml) and sodium azide (1 mM), and by the uncoupler of oxidative phosphorylation carbonyl cyanide p-trifluorophenylhydrazone (1 microM), agents that were able to deplete significantly the intracellular ATP levels. Taken together, these results are consistent with an important role of an H(+)-ATPase similar to those found in other fungi in the regulation of pHi homoeostasis in P. carinii trophozoites.
Regulation of intracellular pH (pH(i)) and H(+) efflux were investigated in Trypanosoma brucei bloodstream and procyclic trypomastigotes using the fluorescent dyes 2', 7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) acetoxymethyl ester and free BCECF respectively. pH(i) in bloodstream and procyclic trypomastigotes was 7.47+/-0.06 and 7. 53+/-0.07 respectively. Differences in the mechanisms for the regulation of pH(i) were noted between bloodstream and procyclic forms. Procyclic trypomastigotes maintained their pH(i) at neutral over a wide range of external pH values from 6 to 8, and in the absence of K(+) or Na(+). The H(+)-ATPase inhibitors N, N'-dicyclohexylcarbodi-imide (DCCD), diethylstilboestrol and N-ethylmaleimide substantially decreased the steady-state pH(i) and inhibited its recovery from acidification. The rate of H(+) efflux in these forms was determined to be 62+/-6.5 nmol/min per mg of protein, and was substantially decreased by H(+)-ATPase inhibitors. The data support the presence of an H(+)-ATPase as the major regulator of pH(i) in procyclic trypomastigotes. In contrast, bloodstream trypomastigotes were unable to maintain a neutral pH under acidic conditions, and their steady-state pH(i) and recovery from acidification were unaffected by H(+)-ATPase inhibitors, except for DCCD (100 microM). Their steady-state pH(i) was markedly decreased in glucose-free buffer or by >/=10 mM pyruvate, whereas procyclic trypomastigotes were unaffected by similar treatments. The rate of H(+) efflux in bloodstream trypomastigotes was 534+/-38 nmol/min per mg of protein, and was decreased in the absence of glucose and by the addition of pyruvate or DCCD. Pyruvate efflux in these forms was calculated to be 499+/-34 nmol/min per mg of protein, and was significantly inhibited by DCCD, 4, 4'-di-isothiocyanatodihydrostilbene-2,2'-disulphonic acid and alpha-cyanohydroxycinnamic acid. The pyruvate analogues beta-hydroxypyruvate, 3-bromopyruvate, 3-oxoglutarate, oxaloacetate, 3-oxoisovalerate and 3-oxoisohexanoate significantly decreased pH(i), as well as proton and pyruvate efflux, whereas lactate had only a small effect, and no effect was observed with citrate or fumarate. The inhibition by pyruvate analogues of pyruvate efflux, proton efflux and acidification of pH(i) supports the hypothesis that pyruvate efflux is accompanied by proton efflux and that this is the major pH(i) control mechanism in bloodstream forms. Inhibition by H(+)-ATPase inhibitors of residual H(+) efflux in the absence of glucose or in the presence of high extracellular pyruvate indicates a minor role for H(+)-ATPase(s) in control of pH(i) in bloodstream forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.