We study prediction problems in which the conditional distribution of the output given the input varies as a function of task variables which, in our applications, represent space and time. In varying-coefficient models, the coefficients of this conditional are allowed to change smoothly in space and time; the strength of the correlations between neighboring points is determined by the data. This is achieved by placing a Gaussian process (GP) prior on the coefficients. Bayesian inference in varying-coefficient models is generally intractable. We show that with an isotropic GP prior, inference in varying-coefficient models resolves to standard inference for a GP that can be solved efficiently. MAP inference in this model resolves to multitask learning using task and instance kernels. We clarify the relationship between varying-coefficient models and the hierarchical Bayesian multitask model and show that inference for hierarchical Bayesian multitask models can be carried out efficiently using graph-Laplacian kernels. We explore the model empirically for the problems of predicting rent and real-estate prices, and predicting the ground motion during seismic events. We find
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.