Tracking the 6D pose and velocity of objects represents a fundamental requirement for modern robotics manipulation tasks. This paper proposes a 6D object pose tracking algorithm, called MaskUKF, that combines deep object segmentation networks and depth information with a serial Unscented Kalman Filter to track the pose and the velocity of an object in real-time. MaskUKF achieves and in most cases surpasses state-of-the-art performance on the YCB-Video pose estimation benchmark without the need for expensive ground truth pose annotations at training time. Closed loop control experiments on the iCub humanoid platform in simulation show that joint pose and velocity tracking helps achieving higher precision and reliability than with one-shot deep pose estimation networks. A video of the experiments is available as Supplementary Material.
Tactile sensing represents a valuable source of information in robotics for perception of the state of objects and their properties. Modern soft tactile sensors allow perceiving orthogonal forces and, in some cases, relative motions along the surface of the object. Detecting and measuring this kind of lateral motion is fundamental to react to possibly uncontrolled slipping and sliding of the object being manipulated. Object slip detection and prediction have been extensively studied in the robotic community leading to solutions with good accuracy and suitable for closed-loop grip stabilization. However, algorithms for object perception, such as in-hand object pose estimation and tracking algorithms, often assume no relative motion between the object and the hand and rarely consider the problem of tracking the pose of the object subjected to slipping and sliding motions. In this work, we propose a differentiable Extended Kalman filter that can be trained to track the position and the velocity of an object under translational sliding regime from tactile observations alone. Experiments with several objects, carried out on the iCub humanoid robot platform, show that the proposed approach allows achieving an average position tracking error in the order of 0.6 cm, and that the provided estimate of the object state can be used to take control decisions using tactile feedback alone. A video of the experiments is available as Supplementary Material.
6D object pose tracking has been extensively studied in the robotics and computer vision communities. The most promising solutions, leveraging on deep neural networks and/or filtering and optimization, exhibit notable performance on standard benchmarks. However, to our best knowledge, these have not been tested thoroughly against fast object motions. Tracking performance in this scenario degrades significantly, especially for methods that do not achieve real-time performance and introduce non negligible delays. In this work, we introduce ROFT, a Kalman filtering approach for 6D object pose and velocity tracking from a stream of RGB-D images. By leveraging real-time optical flow, ROFT synchronizes delayed outputs of low frame rate Convolutional Neural Networks for instance segmentation and 6D object pose estimation with the RGB-D input stream to achieve fast and precise 6D object pose and velocity tracking. We test our method on a newly introduced photorealistic dataset, Fast-YCB, which comprises fast moving objects from the YCB model set, and on the dataset for object and hand pose estimation HO-3D. Results demonstrate that our approach outperforms state-of-the-art methods for 6D object pose tracking, while also providing 6D object velocity tracking. A video showing the experiments is provided as supplementary material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.