We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3′ and/or 5′ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5′ differences and in support of this we report that a 5′ isomiR-9–1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5′ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes.
The unexpected discovery of introns raised many questions about gene evolution. We provide evidence that actin and tubulin introns were gained between the G and R of the conserved coding sequence C/AAGR that is known to flank introns in general and which we call a proto‐splice site. We conclude that the tubulin and actin introns are less ancient than the coding sequence and so could not have been involved in the primary evolution of the tubulin and actin genes.
The cytoplasmic serine/threonine kinase BRAF and receptor tyrosine kinases of the platelet-derived growth factor receptor (PDGFR) family are frequently activated in cancer by mutations of an equivalent amino acid. Structural studies have provided important insights into why these very different kinases share similar oncogenic hot spots and why the PDGFR juxtamembrane region is also a frequent oncogenic target. This research has implications for other kinases that are mutated in human tumours and for the treatment of cancer using kinase inhibitors.
The evolutionarily conserved Ras/mitogen-activated protein kinase (MAPK) cascade is an integral part of the processes of cell division, differentiation, movement and death. Signals received at the cell surface are relayed into the nucleus, where MAPK phosphorylates and thereby modulates the activities of a subset of transcription factors. Here we report the cloning and characterization of a new component of this signal transduction pathway called Mae (for modulator of the activity of Ets). Mae is a signalling intermediate that directly links the MAPK signalling pathway to its downstream transcription factor targets. Phosphorylation by MAPK of the critical serine residue (Ser 127) of the Drosophila transcription factor Yan depends on Mae, and is mediated by the binding of Yan to Mae through their Pointed domains. This phosphorylation is both necessary and sufficient to abrogate transcriptional repression by Yan. Mae also regulates the activity of the transcriptional activator Pointed-P2 by a similar mechanism. Mae is essential for the normal development and viability of Drosophila, and is required in vivo for normal signalling of the epidermal growth factor receptor. Our study indicates that MAPK signalling specificity may depend on proteins that couple specific substrates to the kinase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.