The 3rd BARN (Benchmark Autonomous Robot Navigation) Challenge took place at the 2024 IEEE International Conference on Robotics and Automation (ICRA 2024) in Yokohama, Japan and continued to evaluate the performance of state-of-the-art autonomous ground navigation systems in highly constrained environments. Similar to the trend in The 1st and 2nd BARN Challenge at ICRA 2022 and 2023 in Philadelphia (North America) and London (Europe), The 3rd BARN Challenge in Yokohama (Asia) became more regional, i.e., mostly Asian teams participated. The size of the competition has slightly shrunk (six simulation teams, four of which were invited to the physical competition). The competition results, compared to last two years, suggest that the field has adopted new machine learning approaches while at the same time slightly converged to a few common practices. However, the regional nature of the physical participants suggests a challenge to promote wider participation all over the world and provide more resources to travel to the venue. In this article, we discuss the challenge, the approaches used by the three winning teams, and lessons learned to direct future research and competitions.
Robotic navigation in unknown, cluttered environments with limited sensing capabilities poses significant challenges in robotics. Local trajectory optimization methods, such as Model Predictive Path Intergal (MPPI), are a promising solution to this challenge. However, global guidance is required to ensure effective navigation, especially when encountering challenging environmental conditions or navigating beyond the planning horizon. This study presents the GP-MPPI, an online learning-based control strategy that integrates MPPI with a local perception model based on Sparse Gaussian Process (SGP).The key idea is to leverage the learning capability of SGP to construct a variance (uncertainty) surface, which enables the robot to learn about the navigable space surrounding it, identify a set of suggested subgoals, and ultimately recommend the optimal subgoal that minimizes a predefined cost function to the local MPPI planner. Afterward, MPPI computes the optimal control sequence that satisfies the robot and collision avoidance constraints. Such an approach eliminates the necessity of a global map of the environment or an offline training process. We validate the efficiency and robustness of our proposed control strategy through both simulated and real-world experiments of 2D autonomous navigation tasks in complex unknown environments, demonstrating its superiority in guiding the robot safely towards its desired goal while avoiding obstacles and escaping entrapment in local minima. The GPU implementation of GP-MPPI, including the supplementary video, is available at https://github.com/IhabMohamed/GP-MPPI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.