Drug delivery in diffuse intrinsic pontine glioma is significantly limited by the blood-brain barrier (BBB). Focused ultrasound (FUS), when combined with the administration of microbubbles can effectively open the BBB permitting the entry of drugs across the cerebrovasculature into the brainstem. Given that the utility of FUS in brainstem malignancies remains unknown, the purpose of our study was to determine the safety and feasibility of this technique in a murine pontine glioma model. A syngeneic orthotopic model was developed by stereotactic injection of PDGF-B+PTEN−/−p53−/− murine glioma cells into the pons of B6 mice. A single-element, spherical-segment 1.5 MHz ultrasound transducer driven by a function generator through a power amplifier was used with concurrent intravenous microbubble injection for tumor sonication. Mice were randomly assigned to control, FUS and double-FUS groups. Pulse and respiratory rates were continuously monitored during treatment. BBB opening was confirmed with gadolinium-enhanced MRI and Evans blue. Kondziela inverted screen testing and sequential weight lifting measured motor function before and after sonication. A subset of animals were treated with etoposide following ultrasound. Mice were either sacrificed for tissue analysis or serially monitored for survival with daily weights. FUS successfully caused BBB opening while preserving normal cardiorespiratory and motor function. Furthermore, the degree of intra-tumoral hemorrhage and inflammation on H&E in control and treated mice was similar. There was also no difference in weight loss and survival between the groups (p > 0.05). Lastly, FUS increased intra-tumoral etoposide concentration by more than fivefold. FUS is a safe and feasible technique for repeated BBB opening and etoposide delivery in a preclinical pontine glioma model.
Patients with diffuse midline gliomas-H3K27-altered (DMG) display a dismal prognosis. However, the molecular mechanisms underlying DMG tumorigenesis remain poorly defined. Here we show that SMARCA4, the catalytic subunit of mammalian SWI/SNF chromatin remodeling complex, is essential for the proliferation, migration and invasion of DMG cells and tumor growth in patient-derived DMG xenograft models. SMARCA4 co-localizes with SOX10 at gene regulatory elements (GRE) to control the expression of genes involved in cell growth and extracellular matrix (ECM). Moreover, SMARCA4 chromatin binding is reduced upon depletion of SOX10 or H3.3K27M, a mutation occurring in about 60% DMG tumors. Furthermore, the SMARCA4 occupancy at enhancers marked by both SOX10 and H3K27 acetylation is reduced the most upon depleting the H3.3K27M mutation. Taken together, our results support a model in which epigenome reprogramming by H3.3K27M creates a dependence on SMARCA4-mediated chromatin remodeling to drive gene expression and the pathogenesis of H3.3K27M DMG.
AAPM TG 132. The mean score was below 1.0 for all volumes. Editing thecal sac and vertebrae auto contours only required 1 min or less for all patients. The models reduced contouring time by 84 and 40 min for thecal sac and vertebrae, respectively. Conclusion:The deep-learning models provided high-quality auto contours, directly acceptable for lungs and requiring only minor editing in less than one min for thecal sac, vertebrae and kidneys. Given the labor-intensive nature of manually contouring thecal sac and vertebrae, the high accuracy of the auto contours resulted in substantial reduction of contouring time and thus faster turnaround for CSI treatment. The models can provide a uniform starting point for CSI contouring in our field, which is particularly beneficial to clinics with less experiences.
Scanning probe microscopes are notoriously sensitive to many types of external and internal interference including electrical, mechanical and acoustic noise. Sometimes noise can even be misinterpreted as real features in the images. Therefore, quantification of the frequency and magnitude of any noise is key to discovering the source and eliminating it from the system. While commercial spectrum analyzers are perfect for this task, they are rather expensive and not always available. We present a simple, cost effective solution in the form of an audio output from the instrument coupled to a smart phone spectrum analyzer application. Specifically, the scanning probe signal, e.g. the tunneling current of a scanning tunneling microscope is fed to the spectrum analyzer which Fourier transforms the time domain acoustic signal into the frequency domain. When the scanning probe is in contact with the sample, but not scanning, the output is a spectrum containing both the amplitude and frequency of any periodic noise affecting the microscope itself, enabling troubleshooting to begin.
BackgroundDiffuse intrinsic pontine gliomas (DIPG’s) are immunologically inert tumors with a median survival of 9–15 months. Radiation therapy (RT) is the mainstay treatment for DIPG but is associated with immunodepletion of the tumor microenvironment (TME) at high dose ranges. FLASH, or ultra-fast dose rate RT, represents a novel ablative technique that may spare TME immune responses while decreasing tumor burden. Here, we present single-cell immune profiling of DIPG tumors treated with FLASH, conventional dose rate RT (CONV) or no RT (SHAM).MethodsMurine H3.3K27M mutant DIPG cells were stereotactically injected and tumor induction confirmed by magnetic resonance imaging (MRI) 15 days later. DIPG-bearing mice were randomly assigned to one of three treatment groups (n=4/group), FLASH, CONV or SHAM. A fourth group with no tumor (NML) was included as a negative biological control. A modified linear accelerator was used to deliver 15 Gy of electron RT to the brainstem at dose rates of 90 Gy/second and 2 Gy/minute, for the FLASH and CONV groups, respectively. Four days post-RT, mice brainstems were harvested, homogenized, stained for CD45 and tagged with a hashtag antibody specific to each group. CD45+ immune cells were isolated and sequenced using the 10X Genomics chromium single-cell 3’ platform. After processing and alignment of the reads using CellRanger with default parameters, the data was quality checked and filtered before hashtag demultiplexing, unsupervised clustering and downstream analysis was implemented following the Seurat R package. Differential expression evaluated based on the non-parametric Wilcoxon rank sum test. Key genes determine by an adjusted p value of < 0.05 based on bonferroni correction and |avg log2FC| > 0.8.ResultsPreliminary analysis identifies 15 clusters with distinct CD45 immune phenotypes (figure 1). Differential gene expression analysis by hashtag antibody (treatment group) reveals 14 clusters differentially expressing key genes, including 3 clusters upregulated in DIPG compared to NML, and 2 clusters upregulated in irradiated tumors compared to SHAM and NML (figure 2). Notably, analysis demonstrates an individual cluster upregulated in FLASH versus all other groups (p = 3.07E-171). Further deconvolution of specific immune phenotypes represented by each cluster is ongoing.Abstract 91 Figure 1tSNE plot based on clustering of RNA signatures, grouped by RNAAbstract 91 Figure 2tSNE plot based on clustering of RNA signatures, grouped by hashtag antibodyConclusionsOur preliminary analysis shows differential immune responses among DIPG tumors compared to NML. We also find several immune cell subsets that are unique to DIPG treated with CONV or FLASH compared to unirradiated samples. Most notably, we identify a single immune cell subset that is exclusive to FLASH alone, indicating that FLASH elicits a unique immune response in murine DIPG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.