High mammographic density is associated with a increased risk of breast cancer. We hypothesized that specific pathways exist that are associated with increased mammographic density, and may therefore be used to identify potential targets for chemoprevention. Histologically confirmed normal breast tissue was collected from women undergoing breast surgery who had available demographic data and mammograms for review. Women with low versus high mammographic breast density were compared. Differentially expressed genes using Affymetrix HG U133Plus2 chips were identified in dense versus non-dense tissue. Immunohistochemical analysis (IHC) of estrogen receptor, progesterone receptor, Ki67, and COX2 expression was performed. About 66 women were identified, 28 (42%) had high, and 38 (58%) had low mammographic density. About 73 genes had differential expression between normal breast tissue with high and low mammographic density (P < 0.001, fold change ≥1.5with a low false discovery rate (<10%). Network and canonical pathway analysis indicated decreased TGFβ signaling (TGFBR2, SOS, SMAD3, CD44 and TNFRSF11B) in dense breast tissue relative to non-dense breast. By IHC, only COX2 expression in the stroma was statistically significant on multivariate analysis. TGFβ ligands are currently the only growth factors known to prevent mammary epithelial cell proliferation. TGFβ signaling has been reported to be inhibited by COX-2, and these molecules are highly differentially expressed in individuals at high risk of developing breast cancer. These results strongly suggest that COX2 inhibition should be investigated for breast cancer prevention despite possible increase in cardiovascular risk.
Cholestasis, or impaired bile flow, occurs in a wide variety of liver diseases and causes hepatic damage by retention and accumulation of toxic hydrophobic bile salts inducing persistent inflammation and oxidative stress. In the present research, we studied the effect of leflunomide, a novel immunosuppressive and anti-inflammatory agent against autoimmune disease, on hepatic damage produced by double ligature of the extrahepatic biliary duct in Wistar Albino rats. Cholestasis was done by double ligature and section of the extrahepatic biliary duct (BDL). Leflunomide was given i.g. 10 mg/kg/day. The severity of cholestasis and hepatic injury was determined by changes in the plasma enzyme activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and levels of direct bilirubin. Malondialdehyde (MDA), protein carbonyl (PC), nitric oxide (NO), catalase (CAT) and superoxide dismutase (SOD) were determined to the oxidative status in the liver tissue. Myeloperoxidase (MPO) activity and levels of tissue hydroxyproline (HPR) were determined to neutrophil activation and collagen accumulation, respectively. Further, histological changes were studied. Treatment with leflunomide markedly reduced serum transaminase activities as compared to BDL rats. At the same time leflunomide significantly inhibited increases in liver MDA, PC and NO levels and also attenuated the depletion of CAT and SOD in the liver after bile duct ligation. Similarly, increase in tissue MPO activity and HPR due to BDL was also attenuated by leflunomide treatment. These findings were supported by histopathological findings. These findings suggested that leflunomide can attenuate hepatic damage in extrahepatic cholestasis by prevention of oxidative stress and inflammatory process.
Spinal cord injury (SCI) caused by trauma mainly occurs in two mechanisms as primary and secondary injury. Secondary injury following the primary impact includes various pathophysiological and biochemical events. Methylprednisolone is the only pharmacological agent having clinically proven beneficial effects on SCI. Citicoline has been shown to have clinical and experimental beneficial effects on brain ischemia. This study aims to investigate the neuroprotective effect of citicoline in an experimental SCI model in rats. Sixty adult Wistar albino rats were randomized into five groups. SCI was performed by the weight-drop model. Group 1 underwent laminectomy alone. The Group 2 underwent laminectomy followed by SCI and received no medication. Group3, Group 4 and Group 5 underwent laminectomy followed by SCI and received medication. Group 3 and Group 5 received citicoline and Group 4 and Group 5 received methylprednisolone. The rats were divided into two subgroups for biochemical analysis (sacrificed at 24 h after surgery) and neurobehavioral and histopathological evaluation (sacrificed at 6 weeks after surgery). Malondialdehyde levels, nitric oxide levels and trauma size ratios were lower and reduced glutathione levels were higher in Group 3, Group 4 and Group 5 as compared to Group 2. Posttraumatic neurological recovery after surgery was significantly better in Group 3, Group 4 and Group 5 compared to Group 2. In conclusion, this study demonstrates that citicoline is as effective as methylprednisolone. The efficacy of citicoline combined with methylprednisolone is not superior to either citicoline or methylprednisolone alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.