The use of synthetic, natural, or biological agents to minimize the occurrence of cancer in healthy individuals is defined as cancer chemoprevention. Chemopreventive agents inhibit the development of cancer either by impeding DNA damage, which leads to malignancy or by reversing or blocking the division of premalignant cells with DNA damage. The benefit of this approach has been demonstrated in clinical trials of breast, prostate, and colon cancer. The continuous increase in cancer cases, failure of conventional chemotherapies to control cancer, and excessive toxicity of chemotherapies clearly demand an alternative approach. The first trial to show benefit of chemoprevention was undertaken in breast cancer patients with the use of tamoxifen, which demonstrated a significant decrease in invasive breast cancer. The success of using chemopreventive agents for protecting the high risk populations from cancer indicates that the strategy is rational and promising. Dietary components such as capsaicin, cucurbitacin B, isoflavones, catechins, lycopenes, benzyl isothiocyanate, phenethyl isothiocyanate, and piperlongumine have demonstrated inhibitory effects on cancer cells indicating that they may serve as chemopreventive agents. In this review, we have addressed the mechanism of chemopreventive and anticancer effects of several natural agents.
It is now widely accepted that several gene alterations including transcription factors are critically involved in cancer progression and metastasis. Forkhead Box Class O proteins (FoxOs) including FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX and FoxO6 transcription factors are known to play key roles in proliferation, apoptosis, metastasis, cell metabolism, aging and cancer biology through their phosphorylation, ubiquitination, acetylation and methylation. Though FoxOs are proved to be mainly regulated by upstream phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt signaling pathway, the role of FoxOs in cancer progression and metastasis still remains unclear so far. Thus, with previous experimental evidences, the present review discussed the role of FoxOs in association with metastasis related molecules including cannabinoid receptor 1 (CNR1), Cdc25A/Cdk2, Src, serum and glucocorticoid inducible kinases (SGKs), CXCR4, E-cadherin, annexin A8 (ANXA8), Zinc finger E-box-binding homeobox 2 (ZEB2), human epidermal growth factor receptor 2 (HER2) and mRNAs such as miR-182, miR-135b, miR-499-5p, miR-1274a, miR-150, miR-34b/c and miR-622, subsequently analyzed the molecular mechanism of some natural compounds targeting FoxOs and finally suggested future research directions in cancer progression and metastasis.
Aldo-keto reductase 1C3 (AKR1C3), also known as type 5 17 β-hydroxysteroid dehydrogenase, is responsible for intratumoral androgen biosynthesis, contributing to the development of castration-resistant prostate cancer (CRPC) and eventual chemotherapeutic failure. Significant upregulation of AKR1C3 is observed in CRPC patient samples and derived CRPC cell lines. As AKR1C3 is a downstream steroidogenic enzyme synthesizing intratumoral testosterone (T) and 5α-dihydrotestosterone (DHT), the enzyme represents a promising therapeutic target to manage CRPC and combat the emergence of resistance to clinically employed androgen deprivation therapy. Herein, we demonstrate the antineoplastic activity of a potent, isoform-selective and hydrolytically stable AKR1C3 inhibitor ()-3-(4-(3-methylbut-2-en-1-yl)-3-(3-phenylpropanamido)phenyl)acrylic acid (), which reduces prostate cancer cell growth and and sensitizes CRPC cell lines (22Rv1 and LNCaP1C3) toward the antitumor effects of enzalutamide. Crucially, does not induce toxicity in nonmalignant WPMY-1 prostate cells nor does it induce weight loss in mouse xenografts. Moreover, reduces androgen receptor (AR) transactivation and prostate-specific antigen expression levels in CRPC cell lines indicative of a therapeutic effect in prostate cancer. Combination studies of with enzalutamide reveal a very high degree of synergistic drug interaction that induces significant reduction in prostate cancer cell viability via apoptosis, resulting in>200-fold potentiation of enzalutamide action in drug-resistant 22Rv1 cells. These results demonstrate a promising therapeutic strategy for the treatment of drug-resistant CRPC that invariably develops in prostate cancer patients following initial treatment with AR antagonists such as enzalutamide. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.