Vortex shedding over a cylinder is strongly affected by the cylinder oscillation. The dynamics of the cylinder wake subjected to harmonic forced excitation in the inline direction at Re = 200 is investigated in this work. Two dominant modes of the transverse velocity field are considered to model and predict the nonlinear interaction of 2D vortex shedding. The normal form symmetries have the main role in the pattern formation. The interaction of two steady modes in the presence of O(2) × S1 symmetry is described by equivariant theory. Considering the symmetries, the amplitude equations are developed with the frequency saturation information included by the addition of complex coefficients. The reduced model is expanded up to 7th order, in order to include the spatio-temporal effects. The coefficients of the model are obtained from 2D simulations of the cylinder wake flow. The physical significance of the inline amplitude oscillation on the wake dynamics is captured by the variation of the two linear coefficients of the low order model. Similarly to the numerical results, as the amplitude of oscillation increases, two limit cycles undergo the symmetry-breaking bifurcation leading to a quasi-periodic state. The existence of the second frequency in addition to the natural shedding frequency is manifested as the small amplitude oscillation in the quasi-periodic state. For a forcing amplitude A/D = 0.5, the quasi-periodic state undergoes a torus doubling bifurcation. The dominant frequency of the bifurcated S mode matches the lift coefficient shedding frequency at A/D = 0.5 obtained from the numerical computation. The lift coefficient signal is not absolutely periodic due to the presence of the other peaks in addition to the dominant one at St = 0.1 representing the quasi-periodic flow pattern. The modulated travelling waves bifurcated from the low order model have mode S as the basic v-velocity mode which verifies the symmetric torus-doubled transverse velocity pattern observed in CFD simulation. Thus the proposed low order model can predict, with reasonable accuracy, the bifurcation sequence of the forced cylinder wake dynamic transitions observed in the numerical computation results.
A 3D numerical simulation of a circular cylinder wake is presented in this paper. The cylinder is harmonically forced in the stream-wise direction. The objective of the present work is to investigate the effect of the oscillation amplitude on the secondary transition of the wake. The frequency of the lift force is then linked to the form of the vortex shedding mode. The relation between these vortex shedding modes using POD analysis of the transverse velocity and the unsteady lift coefficient of 3D simulation is in good agreement with the 2D model. Results show that the 3D spanwise effect, which can change the wake structure, is suppressed at Re = 200 by streamwise oscillation of the cylinder. Thus the 2D analysis can effectively model the temporal instability of the wake flow.
The two-dimensional numerical simulation of the flow over a cylinder forced to oscillate in the streamwise direction for Re = 200 is performed in CFX ANSYS. The controlled-vibration comprises of prescribed inline vibration from displacement amplitude-to-cylinder diameter A/D = 0.05 up to 0.5 with the excitation frequency ratios of 1, 1.5 and 2 including the harmonic and superharmonic excitation regions. The immersed boundary method is used to model the cylinder oscillation. Modal decomposition of the transverse velocity field via the proper orthogonal decomposition (POD) method is applied to uncover the interaction of symmetric and antisymmetric modes of the near wake. A model using the first two POD modes is developed based on symmetry group equivariance. The model predicts the mode interactions and bifurcated solution branches for all cases, and is shown to be in good agreement with numerical as well as previous experimental results. Lock-on is determined for a range of values of the oscillation amplitudes and frequency ratios. It is shown that the lock-on range widens with increasing nondimensional oscillation amplitude. The asymmetric 2S, P + S and symmetric pattern S with symbol S for a single vortex and P for a vortex pair shed per cycle, as well as a regime in which vortex formation is not synchronized with cylinder motion are observed in the cylinder wake depending on the combination of oscillation amplitude and frequency ratio. The frequency ratio variation from 1 to 2 leads to the switching from asymmetric to symmetric modes. The symmetric flow pattern corresponds to a near zero lift coefficient on the cylinder.
The Compound Parabolic Concentrator (CPC) is designed, and its optical and thermal analysis is performed in ANSYS. The CPC sizing and the optimal mass ow rate by Maximum Power Point Tracking (MPPT) method in MATLAB are determined. The radiative transfer equation is solved by Discrete Ordinate (DO) and Monte Carlo (MC) models, and the deduced radiative ux divergence is applied as a source term in Navier-Stokes equations to model heat transfer. Results indicate that MC is faster than DO with lower computational cost and higher accuracy. The optimal mass ow rate at each timevariable solar radiation is calculated from MPPT control and entered as the inlet boundary condition for the 3D Computational Fluid Dynamics (CFD) model. The absorbed useful power by MPPT is about 4% higher than the constant mass ow rate case. Reduction of the convective heat transfer by locating the evacuated tube collectors inside a cavity leads to 12% more power and 25% temperature enhancement in the 3D model concerning MPPT-based analytical results. Then, the evacuated collector in a cavity with MPPT control has about 16% power gain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.