Phenolic compounds are priority pollutants with high toxicity even at low concentrations. In this review, the efficiency of both conventional and advanced treatment methods is discussed. The applicability of these treatments with phenol and some common derivatives is compared. Conventional treatments such as distillation, absorption, extraction, chemical oxidation, and electrochemical oxidation show high efficiencies with various phenolic compounds, while advanced treatments such as Fenton processes, ozonation, wet air oxidation, and photochemical treatment use less chemicals compared to the conventional ones but have high energy costs. Compared to physicochemical treatment, biological treatment is environmentally friendly and energy saving, but it cannot treat high concentration pollutants. Enzymatic treatment has proven to be the best way to treat various phenolic compounds under mild conditions with different enzymes such as peroxidases, laccases, and tyrosinases.
Background. Some industrial manufacturing processes generate and release dyes as water pollutants, many of which are toxic and hazardous materials. There is a need for milder, greener methods for dye treatment. Objectives. The objective of the present study was to investigate and optimize azo dye decoloration by a crude soybean peroxidase (SBP), based on two dyes that have widespread industrial use, but that differ greatly in structural complexity, Acid Black 2 and Acid Orange 7, and to investigate the effects of specific parameters on the removal process. Methods. Batch reactors were used to remove 95% of the dyes' color and to produce substantial precipitates. Results. The optimum pH for enzymatic decoloration of Acid Black 2 was in the acidic region, pH 4.4, and that of Acid Orange 7 occurred under neutral conditions, pH 6.9. The minimum enzyme activity needed for sufficient removal was 1.2 U/mL for both dyes at 0.5 mM. The minimum molar hydrogen peroxide/substrate ratio was 3 for Acid Orange 7 and 2.5 for Acid Black 2 to achieve approximately 95% removal. First-order fitting of progress curve data collected under the respective optimum conditions gave half-lives of 23.9 and 28.9 minutes for Acid Orange 7 and Acid Black 2, respectively. Conclusions. The feasibility of SBP-catalyzed treatment of industrial dyes Acid Black 2 and/or Acid Orange 7, or dyes that resemble them, as they might occur in industrial effluents, was successfully demonstrated. Competing Interests.The authors declare no competing financial interests
Soybean peroxidase effectively transformed selected amino- and hydroxyl-azoles by radical coupling to dimers and trimers, showing feasibility for wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.