Epidermal growth factor receptor (EGFR) gene mutations (G719X, exon 19 deletions/insertions, L858R and L861Q) predict favorable responses to EGFR tyrosine kinase inhibitors (TKIs) in advanced non-small-cell lung cancer (NSCLC). However, EGFR exon 20 insertion mutations (∼10% of all EGFR mutations) are generally associated with insensitivity to available TKIs (gefitinib, erlotinib and afatinib). The basis of this primary resistance is poorly understood. We study a broad subset of exon 20 insertion mutations, comparing in vitro TKI sensitivity with responses to gefitinib and erlotinib in NSCLC patients; and find that most are resistant to EGFR TKIs. The crystal structure of a representative TKI-insensitive mutant (D770_N771insNPG) reveals an unaltered ATP-binding pocket and the inserted residues form a wedge at the end of the C-helix that promotes the active kinase conformation. Unlike EGFR-L858R, D770_N771insNPG activates EGFR without increasing its affinity for EGFR TKIs. Unexpectedly, we find that EGFR-A763_Y764insFQEA is highly sensitive to EGFR TKIs in vitro; and patients whose NSCLCs harbor this mutation respond to erlotinib. Analysis of the A763_Y764insFQEA mutant indicates that the inserted residues shift the register of the C-helix in the N-terminal direction, altering the structure in the region that is also affected by the TKI-sensitive EGFR-L858R. Our studies reveal intricate differences between EGFR mutations, their biology and their response to EGFR TKIs.
Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response than Col-0, suggesting that the in-space light environment affects physiological adaptation, which implies that manipulating the local habitat can also substantially impact the metabolic cost of spaceflight adaptation.
SUMMARYCoactivator-associated arginine methyltransferase I (CARM1; PRMT4) regulates gene expression by multiple mechanisms including methylation of histones and coactivation of steroid receptor transcription. Mice lacking CARM1 are small, fail to breathe and die shortly after birth, demonstrating the crucial role of CARM1 in development. In adults, CARM1 is overexpressed in human grade-III breast tumors and prostate adenocarcinomas, and knockdown of CARM1 inhibits proliferation of breast and prostate cancer cell lines. Based on these observations, we hypothesized that loss of CARM1 in mouse embryos would inhibit pulmonary cell proliferation, resulting in respiratory distress. By contrast, we report here that loss of CARM1 results in hyperproliferation of pulmonary epithelial cells during embryonic development. The lungs of newborn mice lacking CARM1 have substantially reduced airspace compared with their wild-type littermates. In the absence of CARM1, alveolar type II cells show increased proliferation. Electron microscopic analyses demonstrate that lungs from mice lacking CARM1 have immature alveolar type II cells and an absence of alveolar type I cells. Gene expression analysis reveals a dysregulation of cell cycle genes and markers of differentiation in the Carm1 knockout lung. Furthermore, there is an overlap in gene expression in the Carm1 knockout and the glucocorticoid receptor knockout lung, suggesting that hyperproliferation and lack of maturation of the alveolar cells are at least in part caused by attenuation of glucocorticoid-mediated signaling. These results demonstrate for the first time that CARM1 inhibits pulmonary cell proliferation and is required for proper differentiation of alveolar cells. ) are small and have defects in the differentiation of multiple cell types including T cells and adipocytes (Kim et al., 2004;Yadav et al., 2008;Yadav et al., 2003). Recently, it has been shown that mice carrying the enzyme-dead form of CARM1 phenocopy the Carm1 knockout, suggesting that CARM1 requires enzymatic activity for its known cellular functions (Kim et al., 2009). Carm1 knockout animals die shortly after birth and suffer from respiratory distress. Carm1/ animals fail to inflate their lungs after birth, and have reduced alveolar air space compared with wild-type littermates. These observations suggest that CARM1 is an important regulator of lung development. However, detailed studies of CARM1 expression and function in lung have not been described. Development of the distal lung and alveolar sacculation are tightly regulated by a myriad of hormone signals and a cascade of interacting transcription factor pathways that are just beginning to be elucidated (Cardoso and Lu, 2006;Maeda et al., 2007). Progenitor cells in the distal lung differentiate to multiple types including Clara bronchiole epithelial cells and alveolar type II (AT2) cells. AT2 cells are cuboidal and located in the alveolar sacs that produce the surfactant required to reduce surface tension for these sacs to fill with air. AT2 cell...
BackgroundPlants adapted to diverse environments on Earth throughout their evolutionary history, and developed mechanisms to thrive in a variety of terrestrial habitats. When plants are grown in the novel environment of spaceflight aboard the International Space Station (ISS), an environment completely outside their evolutionary history, they respond with unique alterations to their gene expression profile. Identifying the genes important for physiological adaptation to spaceflight and dissecting the biological processes and pathways engaged by plants during spaceflight has helped reveal spaceflight adaptation, and has furthered understanding of terrestrial growth processes. However, the underlying regulatory mechanisms responsible for these changes in gene expression patterns are just beginning to be explored. Epigenetic modifications, such as DNA methylation at position five in cytosine, has been shown to play a role in the physiological adaptation to adverse terrestrial environments, and may play a role in spaceflight as well.ResultsWhole Genome Bisulfite Sequencing of DNA of Arabidopsis grown on the ISS from seed revealed organ-specific patterns of differential methylation compared to ground controls. The overall levels of methylation in CG, CHG, and CHH contexts were similar between flight and ground DNA, however, thousands of specifically differentially methylated cytosines were discovered, and there were clear organ-specific differences in methylation patterns. Spaceflight leaves had higher methylation levels in CHG and CHH contexts within protein-coding genes in spaceflight; about a fifth of the leaf genes were also differentially regulated in spaceflight, almost half of which were associated with reactive oxygen signaling.ConclusionsThe physiological adaptation of plants to spaceflight is likely nuanced by epigenomic modification. This is the first examination of differential genomic methylation from plants grown completely in the spaceflight environment of the ISS in plant growth hardware developed for informing exploration life support strategies. Yet even in this optimized plant habitat, plants respond as if stressed. These data suggest that gene expression associated with physiological adaptation to spaceflight is regulated in part by methylation strategies similar to those engaged with familiar terrestrial stress responses. The differential methylation maps generated here provide a useful reference for elucidating the layers of regulation of spaceflight responses.Electronic supplementary materialThe online version of this article (10.1186/s12864-019-5554-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.