The eyes and visual capacity of the naked mole-rat, Heterocephalus glaber, a subterranean rodent, were evaluated using anatomical, biochemical, and functional assays, and compared to other rodents of similar body size (mouse and gerbil). The eye is small compared to mouse, yet possesses cornea, lens, and retina with typical mammalian organization. The optic nerve cross-sectional area and fiber density are approximately 10% and approximately 50% that of gerbil, respectively. Levels per unit retinal area of 11-cis and all-trans retinal, derivatives of vitamin A associated with the visual cycle, are comparable to mouse. The corneal electroretinogram (ERG) exhibits early and late negative components that scale with flash strength; raising the body temperature of this poikilothermic animal from 30 degrees C (normal for H. glaber ) to 37 degrees C (normal for mouse) revealed an ERG response with typically mammalian features, but greatly attenuated and with slower kinetics. Leaving the nest chamber was a behavior correlated with light onset displayed preferentially by breeding females. Optical models of five mole-rat eyes suggest reasonable, but variable, image formation at the retina, possibly related to age. Results are consistent with amorphous light detection, possibly useful for circadian entrainment or escape behavior in the event of tunnel breeches.
The results indicate preservation of a substantial inward flux of all-trans retinol from the circulation into the RPE of Rpe65(-/-) mice, despite the presence of abnormally high molar levels of RPE retinyl ester. They further imply the occurrence of a robust outward movement of all-trans retinol from the RPE into the circulation in Rpe65(+/+) mice, and substantial impairment of this efflux process in Rpe65(-/-) mice. These findings raise the hypothesis that in normal RPE, 11-cis retinal and/or 11-cis retinol stimulate the efflux of all-trans retinol at the RPE basolateral membrane. In 3-month Rpe65(+/+) mice, the observed relationship between the SAs of retinaldehydes in the retina and of RPE retinyl ester is consistent with a last-in/first-out processing of all-trans retinol to 11-cis retinal within normally functioning RPE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.