Summary
The mesoderm- and epithelial-mesenchymal transition-associated transcription factor FOXC1 is specifically overexpressed in basal-like breast cancer (BLBC), but its biochemical function is not understood. Here we demonstrate that FOXC1 controls cancer stem cell (CSC) properties enriched in BLBC cells via activation of Smoothened (SMO)-independent Hedgehog (Hh) signaling. This non-canonical activation of Hh is specifically mediated by Gli2. We further show that the N-terminal domain of FOXC1 (aa 1–68) binds directly to an internal region (aa 898–1168) of Gli2, enhancing the DNA-binding and transcription-activating capacity of Gli2. FOXC1 expression correlates with that of Gli2 and its targets in human breast cancers. Moreover, FOXC1 overexpression reduces sensitivity to anti-Hedgehog (Hh) inhibitors in BLBC cells and xenograft tumors. Together, these findings reveal FOXC1-mediated non-canonical Hh signaling that determines the BLBC stem-like phenotype and anti-Hh sensitivity, supporting inhibition of FOXC1 pathways as potential approaches for improving BLBC treatment.
Although cancer-associated fibroblasts (CAFs) are viewed as a promising therapeutic target, the design of rational therapy has been hampered by two key obstacles. First, attempts to ablate CAFs have resulted in significant toxicity because currently used biomarkers cannot effectively distinguish activated CAFs from non-cancer associated fibroblasts and mesenchymal progenitor cells. Second, it is unclear whether CAFs in different organs have different molecular and functional properties that necessitate organ-specific therapeutic designs. Our analyses uncovered COL11A1 as a highly specific biomarker of activated CAFs. Using COL11A1 as a ‘seed’, we identified co-expressed genes in 13 types of primary carcinoma in The Cancer Genome Atlas. We demonstrated that a molecular signature of activated CAFs is conserved in epithelial cancers regardless of organ site and transforming events within cancer cells, suggesting that targeting fibroblast activation should be effective in multiple cancers. We prioritized several potential pan-cancer therapeutic targets that are likely to have high specificity for activated CAFs and minimal toxicity in normal tissues.
The structural order and aggregation of non‐fullerene acceptors (NFA) are critical toward light absorption, phase separation, and charge transport properties of their photovoltaic blends with electron donors, and determine the power conversion efficiency (PCE) of the corresponding organic solar cells (OSCs). In this work, the fibrillization of small molecular NFA L8‐BO with the assistance of fused‐ring solvent additive 1‐fluoronaphthalene (FN) to substantially improve device PCE is demonstrated. Molecular dynamics simulations show that FN attaches to the backbone of L8‐BO as the molecular bridge to enhance the intermolecular packing , inducing 1D self‐assembly of L8‐BO into fine fibrils with a compact polycrystal structure. The L8‐BO fibrils are incorporated into a pseudo‐bulk heterojunction (P‐BHJ) active layer with D18 as a donor, and show enhanced light absorption, charge transport, and collection properties, leading to enhanced PCE from 16.0% to an unprecedented 19.0% in the D18/L8‐BO binary P‐BHJ OSC, featuring a high fill factor of 80%. This work demonstrates a strategy for fibrillating NFAs toward the enhanced performance of OSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.