The carbonic anhydrase isoform IX (CAIX) enzyme is constitutively overexpressed in the vast majority of clear cell renal cell carcinoma (ccRCC) and can also be induced in hypoxic microenvironments, a major hallmark of most solid tumors. CAIX expression is restricted to a few sites in healthy tissues, positioning this molecule as a strategic target for cancer immunotherapy. In this review, we summarized preclinical and clinical data of immunotherapeutic strategies based on monoclonal antibodies (mAbs), fusion proteins, chimeric antigen receptor (CAR) T, and NK cells targeting CAIX against different types of solid malignant tumors, alone or in combination with radionuclides, cytokines, cytotoxic agents, tyrosine kinase inhibitors, or immune checkpoint blockade. Most clinical studies targeting CAIX for immunotherapy were performed using G250 mAb-based antibodies or CAR T cells, developed primarily for bioimaging purposes, with a limited clinical response for ccRCC. Other anti-CAIX mAbs, CAR T, and NK cells developed with therapeutic intent presented herein offered outstanding preclinical results, justifying further exploration in the clinical setting.
The complete regression of clear cell renal cell carcinoma (ccRCC) obtained pre-clinically with anti-carbonic anhydrase IX (CAIX) G36 chimeric antigen receptor (CAR) T cells in doses equivalent to ≅108 CAR T cells/kg renewed the potential of this target to treat ccRCC and other tumors in hypoxia. The immune checkpoint blockade (ICB) brought durable clinical responses in advanced ccRCC and other tumors. Here, we tested CD8α/4-1BB compared to CD28-based anti-CAIX CAR peripheral blood mononuclear cells (PBMCs) releasing anti-programmed cell death ligand-1 (PD-L1) IgG4 for human ccRCC treatment in vitro and in an orthotopic NSG mice model in vivo. Using a ≅107 CAR PBMCs cells/kg dose, anti-CAIX CD28 CAR T cells releasing anti-PD-L1 IgG highly decrease both tumor volume and weight in vivo, avoiding the occurrence of metastasis. This antitumoral superiority of CD28-based CAR PBMCs cells compared to 4-1BB occurred under ICB via PD-L1. Furthermore, the T cell exhaustion status in peripheral CD4 T cells, additionally to CD8, was critical for CAR T cells efficiency. The lack of hepatotoxicity and nephrotoxicity upon the administration of a 107 CAR PMBCs cells/kg dose is the basis for carrying out clinical trials using anti-CAIX CD28 CAR PBMCs cells releasing anti-PD-L1 antibodies or anti-CAIX 4-1BB CAR T cells, offering exciting new prospects for the treatment of refractory ccRCC and hypoxic tumors.
The complete regression of clear cell renal cell carcinoma (ccRCC) obtained pre-clinically with anti-carbonic anhydrase IX (CAIX) G36 chimeric antigen receptor (CAR) T cells in doses equivalent to 10e8 CAR T cells/ Kg renewed the potential of this target to treat ccRCC and other tumors in hypoxia. The immune checkpoint blockade (ICB) brought durable clinical responses in advanced ccRCC and other tumors. Here we tested CD8/4-1BB compared to CD28-based anti-CAIX CAR PBMCs cells-releasing anti-programmed cell death ligand-1 (PD-L1) IgG4 for human ccRCC treatment in vitro and in an orthotopic NSG mice model in vivo. Using a 10e7 CAR PBMCs cells/ Kg dose, anti-CAIX CD28 CAR T cells releasing anti-PD-L1 IgG highly decrease both tumor volume and weight in vivo, avoiding the occurrence of metastasis. This antitumoral superiority of CD28-based CAR PBMCs cells compared to 4-1BB occurred under ICB via PD-L1. Furthermore, T cell exhaustion status in peripheral CD4 T cells, additionally to CD8 was critical for CAR T cells efficiency. The lack of hepatotoxicity and nephrotoxicity upon administration of 10e7 CAR PMBCs cells/Kg dose is the basis for carrying out clinical trials using anti-CAIX CD28 CAR PBMCs cells releasing anti-PD-L1 antibodies or anti-CAIX 4-1BB CAR T cells, offering exciting new prospects for the treatment of refractory ccRCC and hypoxic tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.