Use of macro plastic fibres to reinforce concrete has attracted widespread attention from both scientists and construction industry due to the multiple sustainability benefits they offer, compared to steel fibres and steel reinforcing mesh. This paper critically reviews the current state of knowledge and technology of using macro plastic fibres to reinforce concrete. Detailed review on the various preparation techniques and the resulting properties of macro plastic fibres are presented and the effects of macro plastic fibres on the fresh and hardened concrete properties are discussed in this paper. The effect of macro plastic fibres on workability, plastic shrinkage, compressive strength, splitting tensile strength, flexural strength, post-crack performance and dry shrinkage is discussed in this paper. Pull-out behaviour and degradation behaviour of the fibre in the concrete are also reviewed. Finally, some applications of the plastic fibre reinforced concrete are discussed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
Slope stability analysis is one of the most important problems in geotechnical engineering. The development in slope stability analysis has followed the development in computational geotechnical engineering. This paper discusses the application of different recently developed artificial neural network models to slope stability analysis based on the actual slope failure database available in the literature. Different ANN models are developed to classify the slope as stable or unstable (failed) and to predict the factor of safety. The developed ANN model is found to be efficient compared with other methods like support vector machine and genetic programming available in literature. Prediction models are presented based on the developed ANN model parameters. Different sensitivity analyses are made to identify the important input parameters.
This paper presents the findings of a laboratory investigation on the characterization of recycled crushed brick when blended with recycled concrete aggregate and crushed rock for pavement sub-base applications. The engineering properties of the crushed brick blends were compared with typical state road authority specifications in Australia for pavement sub-base systems to ascertain the potential use of crushed brick blends in these applications. The experimental programme included particle-size distribution, modified Proctor compaction, particle density, water absorption, California bearing ratio (CBR), Los Angeles abrasion, pH, organic content, and repeated load triaxial tests. Laboratory tests were undertaken on mixtures of 10%, 15%, 20%, 25%, 30%, 40%, and 50% crushed brick blended with recycled concrete aggregate or crushed rock. The research indicates that up to 25% crushed brick could be safely added to recycled concrete aggregate and crushed rock blends in pavement sub-base applications. The repeated load triaxial test results on the blends indicate that the effects of crushed brick content on the mechanical properties in terms of permanent deformation and resilient modulus of both the recycled concrete aggregate and crushed rock blends were marginal compared to the effects on dry density and moisture content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.