Purpose
The purpose of this paper is to investigate the magnetohydrodynamics mixed convection flow over an exponentially stretching surface in the presence of non-uniform heat source/sink and cross-diffusion. Adequate non-similar transformations are used to transform governing mixed convection boundary layer equations to dimensionless form.
Design/methodology/approach
These dimensionless partial differential equations are solved by using implicit finite difference scheme in conjunction with Quasi-linearization technique.
Findings
The effects of admissible parameters such as Eckert number (Ec), the ratio of buoyancy forces parameter (N), non-uniform heat source/sink, Soret and Dufour numbers on flow, temperature and concentration distributions are discussed and analysed through graphs. In addition, the results for skin friction coefficient, Sherwood number and Nusselt number are presented and discussed graphically.
Originality/value
In literature, no research work has been found in similar to this research paper.
In this paper, we investigate mixed convection flow over an exponentially decreasing freestream velocity in presence of nonlinear chemically reactive species and a volumetric heat source or sink. Nonsimilar transformations are used to reduce the boundary layer equations into dimensionless equations and are further solved by the implicit finite difference scheme in combination with the quasi-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.