In a study involving 10 different sites, independent results of measurements of ultrasonic properties on equivalent tissue-mimicking samples are reported and compared. The properties measured were propagation speed, attenuation coefficients, and backscatter coefficients. Reasonably good agreement exists for attenuation coefficients, but less satisfactory results were found for propagation speeds. As anticipated, agreement was not impressive in the case of backscatter coefficients. Results for four sites agreed rather well in both absolute values and frequency dependence, and results from other sites were lower by as much as an order of magnitude. The study is valuable for laboratories doing quantitative studies. KEY WORDS: Measurements; Speed; Attenuation; Backscatter; Interlaboratory comparison. n 1986 an article was published to compare measurements made of ultrasonic attenuation coefficients and propagation speeds in TM phantom materials produced at the University of Wisconsin and sent to participating laboratories. 1 To assess stability of ultrasonic properties during the study, measurements were done on those phantoms at the University of Wisconsin laboratories before and after the measurements were made at other laboratories. The same type of study, involving 10 labo-
This review evaluates the thermal mechanism for ultrasound-induced biological effects in postnatal subjects. The focus is the evaluation of damage versus temperature increase. A view of ultrasound-induced temperature increase is presented, based on thermodynamic Arrhenius analyses. The hyperthermia and other literature revealed data that allowed for an estimate of a temperature increase threshold of tissue damage for very short exposure times. This evaluation yielded an exposure time extension of the 1997 American Institute of Ultrasound in Medicine Conclusions Regarding Heat statement (American Institute of Ultrasound in Medicine, Laurel, MD) to 0.1 second for nonfetal tissue, where, at this exposure time, the temperature increase threshold of tissue damage was estimated to be about 18 degrees C. The output display standard was also evaluated for soft tissue and bone cases, and it was concluded that the current thermal indices could be improved to reduce the deviations and scatter of computed maximum temperature rises.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.