This paper presents the results of numerical investigation of the flow in a vaneless diffuser of centrifugal compressor stage. Simulations were performed using both a commercial CFD package ANSYS CFX and the own-designed computer program. Steady conditions involving SST turbulence model were used for the calculations using CFX. To consider the interaction between impeller and diffuser, not just a diffuser but the whole stage was calculated. The own-designed methodology is based on solving of conservation equations with assumptions that flow in a diffuser is steady state and axisymmetric. The flow area is divided into the flow core and boundary layers. Results of calculation were compared with experimental data.
The modern trend in compressor industry is an extension of the use of multi-shaft centrifugal compressors. Multi-shaft compressors have a number of advantages over single-shaft. The design of such compressors gives opportunity to use an axial inlet for all stages and select the optimum rotational speed for each pair of impellers, which, along with the cooling of the gas after each stage, makes possible to achieve high levels of efficiency. The design of high-efficiency centrifugal compressor stages can be performed on the basis of highly effective stage elements. Such elements are: impellers with spatial blades, vaned and channel diffusers with given velocity distribution. In this paper, impellers with axial-radial blades are considered. The blade profile is determined by the specified pressure distribution along the blade. Such design improves the structure of the gas flow in the interblade channels of the impeller, which leads to an increase in its efficiency. Characteristics of loss coefficients from attack angles for impellers were obtained experimentally. Vaned and channel diffusers, the characteristics of which are given in this article, are designed with the given velocity distribution along the vane. Compared to the classic type of diffuser, such diffusers have lower losses and a wider range of economical operation. For diffusers as well as for impellers, characteristics of loss coefficients from attack angles were obtained. High efficient impellers and diffusers and obtained gas-dynamic characteristics were used in the design of a multi-shaft compressor unit for the production of liquefied natural gas. The initial pressure of the unit is 3bar. The obtained characteristics of loss coefficients from attack angles for the considered impellers and diffusers make it possible to calculate the gas-dynamic characteristics of high-efficient centrifugal compressors stages. The high-efficient centrifugal compressors stages can be designed using high-efficient elements, such as: impeller with spatial blades and vaned diffuser with given velocity distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.