Stretchable devices significantly expand the scope of applications such as flexible displays and wearable devices/sensors. To enable stretchable wearable electronics, methods for connecting unit devices and developing circuits are required. Previously, research was performed to manufacture circuits with 3D structures or patterns that remain intact when the flexible and stretchable substrates are deformed. A method for drawing a circuit directly on a substrate with a conductive ink pen is proposed, although it is limited by the surface properties of the substrate. Most existing transparent papers are not sufficiently stretchable for flexible and wearable electronics applications. Therefore, a polydimethylsiloxane–cellulose nanocrystals (PDMS–CNC) composite paper is developed that is both highly flexible and stretchable, while maintaining a high transmittance. The versatility of the composite paper is demonstrated as a suitable substrate for flexible devices by patterning with a conductive ink pen. The PDMS–CNC composite paper has an excellent transmittance of ≈70%, and can withstand over 800% tensile strain. The patterned circuits have only minor increase in resistance after a 50% deformation and recovery. The composite paper is a suitable technology for fabricating electrical components and devices for the Internet of Things and wearable and flexible electronics applications.
The effects of substituting the B cation in A 3 BO 7 ceramics on their thermal physical properties were investigated by applying a large mass difference. Y 3 (Nb 1-x Ta x )O 7 (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5) ceramics were synthesized, and their structural characteristics were determined. All the fabricated 1358
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.