Background: Several product lifecycle management systems (PLMs) have been implemented in the industrial sector for managing the data of the product from the design up to the disposal or recycling stage. However, these PLMs face certain challenges in managing the complex and decentralized product lifecycles. Methods: To this aim, this work investigates the currently implemented PLMs used in industries through the exploration of various software reviews and selection websites. Accordingly, these existing PLMs are quantitatively compared and analyzed. Results: The analysis shows that most of the existing PLMs do not contain all the required features; therefore, industries integrate different software to create a full-fledged PLM system. However, this practice results in reducing the overall system efficiency. In this context, this paper assesses and recommends a blockchain-based innovative solution that overcomes the challenges of existing PLMs, hence increasing the overall system efficiency. Furthermore, this work argues, in a logical way, that the recommended blockchain-based platform provides a secure and connected infrastructure for data handling, processing, and storage at different stages of the product lifecycle. Conclusions: This work can be considered among the first to compare the currently implemented PLMs with a novel blockchain-based method. Thus, the stakeholders can utilize the outputs of this research in their analysis and decision-making processes for implementing the blockchain in their organizations.
Blockchain technology has disrupted traditional business processes and hence gained significant attention and popularity in recent years. Consequently, a number of blockchain-based platforms are available today that offer vast applications across multiple sectors and industries. Implementing these blockchain-based platforms as an alternative to traditional product lifecycle management systems (PLMs) is one of the applications. However, before any platform is adopted, its nature, functionalities, and adaptability need to be clearly defined, evaluated, and verified. In this context, the proposed work explores the available blockchain-based platforms that can be used for the purpose of product lifecycle management. We then apply one of the multi-criteria decision-making techniques, i.e., the analytic hierarchy process (AHP), to select the best possible blockchain-based platform for PLM. As transaction speed, data privacy, and scalability are our prime concerns in PLM, we only considered the permissioned (private) blockchain platforms as available alternatives in the final selection process. Results achieved on the basis of considered criteria show that Hyperledger Fabric is the top-ranked among available alternatives to be used for PLM. Furthermore, as blockchain is a new technology, a clear comparison of the available platforms based on the performance-based metrics and key performance indicators is not completely matured and is still in the development stage. However, our proposed approach can be considered an attempt to create a procedure for evaluating blockchain-based platform implementation in any sector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.