The aims of the present study were, firstly, to determine the reliability and reproducibility of an agility T-test and Yo-Yo 10 m recovery test; and secondly, to analyse the physical characteristics measured by sprint, agility, strength and endurance field tests in wheelchair basketball (WB) players. 16 WB players (33.06 ± 7.36 years, 71.89 ± 21.71 kg and sitting body height 86.07 ± 6.82 cm) belonging to the national WB league participated in this study. Wheelchair sprint (5 and 20 m without ball, and 5 and 20 m with ball) agility (T-test and pick-up test) strength (handgrip and maximal pass) and endurance (Yo-Yo 10 m recovery test) were performed. T-test and Yo-Yo 10 m recovery test showed good reproducibility values (intraclass correlation coefficient, ICC = 0.74-0.94). The WB players’ results in 5 and 20 m sprints without a ball were 1.87 ± 0.21 s and 5.70 ± 0.43 s and with a ball 2.10 ± 0.30 s and 6.59 ± 0.61 s, being better than those reported in the literature. Regarding the pick-up test results (16.05 ± 0.52 s) and maximal pass (8.39 ± 1.77 m), players showed worse values than those obtained in elite players. The main contribution of the present study is the characterization of the physical performance profile of WB players using a field test battery. Furthermore, we demonstrated that the agility T-test and the aerobic Yo-Yo 10 m recovery test are reliable; consequently they may be appropriate instruments for measuring physical fitness in WB.
Wheelchair basketball players are classified in four classes based on the International Wheelchair Basketball Federation (IWBF) system of competition. Thus, the aim of the study was to ascertain if the IWBF classification, the type of injury and the wheelchair experience were related to different performance field-based tests. Thirteen basketball players undertook anthropometric measurements and performance tests (hand dynamometry, 5 m and 20 m sprints, 5 m and 20 m sprints with a ball, a T-test, a Pick-up test, a modified 10 m Yo-Yo intermittent recovery test, a maximal pass and a medicine ball throw). The IWBF class was correlated (p<0.05) to the hand dynamometry (r= 0.84), the maximal pass (r=0.67) and the medicine ball throw (r= 0.67). Whereas the years of dependence on the wheelchair were correlated to the velocity (p<0.01): 5 m (r= −0.80) and 20 m (r= −0.77) and agility tests (r= −0.77, p<0.01). Also, the 20 m sprint with a ball (r= 0.68) and the T-test (r= −0.57) correlated (p<0.05) with the experience in playing wheelchair basketball. Therefore, in this team the correlations of the performance variables differed when they were related to the disability class, the years of dependence on the wheelchair and the experience in playing wheelchair basketball. These results should be taken into account by the technical staff and coaches of the teams when assessing performance of wheelchair basketball players.
ObjectiveTo determine the effects of a simple exercise program on the balance and strength of postmenopausal women with osteoporosis.MethodsThis program was based on low intensity strength and balance exercises, and was carried out with simple, readily available equipment. Sixty five women were randomly assigned to either the experimental group (EG; n=33, age: 57.4±4.8 years) or the control group (CG; n=32, age: 58.8±4.5 years). Participants in the EG underwent balance and strength training for 60 min, three times/week for 6 months. Each session consisted of warm-up exercises (10 min), balance training (20 min), strength training (20 min), and cooldown (10 min). Participants from the CG were asked not to modify their usual habits during the course of the study. Static balance was evaluated using the blind monopodal stance static balance test. In contrast, dynamic balance was assessed using the “8-foot up and go” test, whereas the strength of the upper and lower limbs was measured using the “arm curl” and “30 s chair stand” tests, respectively. All these variables were assessed at baseline and upon program completion.ResultsThe EG showed significant improvements (P<0.001) in static balance (21%), dynamic balance (36%), and in the strength of the upper (80%) and lower (47%) limbs in comparison to the CG after the sixth month. Participants in the CG showed significantly lower values (P<0.001) in the four tests. In addition, a significant inverse relationship between static balance and the strength of the upper (r=−0.390; P=0.001) and lower (r=−0.317; P=0.01) limbs was found.ConclusionThe present study demonstrates that a physical exercise program based on balance and strength exercises, carried out with simple and readily available equipment, is capable of significantly improving the strength and balance of women with osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.