Solution-processed perovskite (PSC) solar cells have achieved extremely high power conversion efficiencies (PCEs) over 20%, but practical application of this photovoltaic technology requires further advancements on both long-term stability and large-area device demonstration. Here, an additive-engineering strategy is developed to realize a facile and convenient fabrication method of large-area uniform perovskite films composed of large crystal size and low density of defects. The high crystalline quality of the perovskite is found to simultaneously enhance the PCE and the durability of PSCs. By using the simple and widely used methylammonium lead iodide (MAPbI ), a certified PCE of 19.19% is achieved for devices with an aperture area of 1.025 cm , and the high-performing devices can sustain over 80% of the initial PCE after 500 h of thermal aging at 85 °C, which are among the best results of MAPbI -based PSCs so far.
Formamidinium (FA)-based perovskite materials show an extended absorption spectrum to 840 nm, which enables high power conversion efficiencies of over 20% compared with normal-structure perovskite solar cells (PSCs).
Perovskite solar cells (PSCs) are promising candidates for the next generation of solar cells because they are easy to fabricate and have high power conversion efficiencies. However, there has been no detailed analysis of the cost of PSC modules. We selected two representative examples of PSCs and performed a cost analysis of their productions: one was a moderate‐efficiency module produced from cheap materials, and the other was a high‐efficiency module produced from expensive materials. The costs of both modules were found to be lower than those of other photovoltaic technologies. We used the calculated module costs to estimate the levelized cost of electricity (LCOE) of PSCs. The LCOE was calculated to be 3.5–4.9 US cents/kWh with an efficiency and lifetime of greater than 12% and 15 years respectively, below the cost of traditional energy sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.