This paper describes a novel energy-aware multi-hop cluster-based fault-tolerant load balancing hierarchical routing protocol for a self-organizing wireless sensor network (WSN), which takes into account the broadcast nature of radio. The main idea is using hierarchical fuzzy soft clusters enabling non-exclusive overlapping clusters, thus allowing partial multiple membership of a node to more than one cluster, whereby for each cluster the clusterhead (CH) takes in charge intra-cluster issues of aggregating the information from nodes members, and then collaborate and coordinate with its related overlapping area heads (OAHs), which are elected heuristically to ensure inter-clusters communication. This communication is implemented using an extended version of time-division multiple access (TDMA) allowing the allocation of several slots for a given node, and alternating the role of the clusterhead and its associated overlapping area heads. Each cluster head relays information to overlapping area heads which in turn each relays it to other associated cluster heads in related clusters, thus the information propagates gradually until it reaches the sink in a multi-hop fashion.
Mobile agent-based applications are special type of software systems which take the advantages of mobile agents in order to provide a new beneficial paradigm to solve multiple complex problems in several fields and areas such as network management, e-commerce, e-learning, etc. Likewise, we notice lack of real applications based on this paradigm and lack of serious evaluations of their modeling approaches. Hence, this paper provides a comparative study of modeling approaches of mobile agent-based software systems. The objective is to give the reader an overview and a thorough understanding of the work that has been done and where the gaps in the research are. ACM CCS (2012) Classification: Computing methodologies → Artificial intelligence → Distributed artificial intelligence → Mobile agents
This paper presents a bottom-up approach for a multiview measurement of statechart size, topological properties, and internal structural complexity for understandability prediction and assurance purposes. It tackles the problem at different conceptual depths or equivalently at several abstraction levels. The main idea is to study and evaluate a statechart at different levels of granulation corresponding to different conceptual depth levels or levels of details. The higher level corresponds to a flat process view diagram (depth = 0), the adequate upper depth limit is determined by the modelers according to the inherent complexity of the problem under study and the level of detail required for the situation at hand (it corresponds to the all states view). For purposes of measurement, we proceed using bottom-up strategy starting with all state view diagram, identifying and measuring its deepest composite states constituent parts and then gradually collapsing them to obtain the next intermediate view (we decrement depth) while aggregating measures incrementally, until reaching the flat process view diagram. To this goal we first identify, define, and derive a relevant metrics suite useful to predict the level of understandability and other quality aspects of a statechart, and then we propose a fuzzy rule-based system prototype for understandability prediction, assurance, and for validation purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.