Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has posed a significant threat to global health. This virus affects the respiratory tract and usually leads to pneumonia in most patients and acute respiratory distress syndrome (ARDS) in 15% of cases. ARDS is one of the leading causes of death in patients with COVID-19 and is mainly triggered by elevated levels of pro-inflammatory cytokines, referred to as cytokine storm. Interleukins, such as interleukin-6 (1L-6), interleukin-1 (IL-1), interleukin-17 (IL-17), and tumor necrosis factor-alpha (TNF-α) play a very significant role in lung damage in ARDS patients through the impairments of the respiratory epithelium. Cytokine storm is defined as acute overproduction and uncontrolled release of pro-inflammatory markers, both locally and systemically. The eradication of COVID-19 is currently practically impossible, and there is no specific treatment for critically ill patients with COVID-19; however, suppressing the inflammatory response may be a possible strategy. In light of this, we review the efficacy of specific inhibitors of IL6, IL1, IL-17, and TNF-α for treating COVID-19-related infections to manage COVID-19 and improve the survival rate for patients suffering from severe conditions.
Graphical Abstract
A 2.2-kb full length cDNA containing an ORF encoding a putative acetylcholinesterase (AChE) precursor of 673 amino acid residues was obtained by a combined degenerate PCR and RACE strategy from an organophosphate-susceptible Bactrocera oleae strain. A comparison of cDNA sequences of individual insects from susceptible and resistant strains, coupled with an enzyme inhibition assay with omethoate, indicated a novel glycine-serine substitution (G488S), at an amino acid residue which is highly conserved across species (G396 of Torpedocalifornica AChE), as a likely cause of AChE insensitivity. This mutation was also associated with a 35-40% reduction in AChE catalytic efficiency. The I199V substitution, which confers low levels of resistance in Drosophila, was also present in B. oleae (I214V) and in combination with G488S produced up to a 16-fold decrease in insecticide sensitivity. This is the first agricultural pest where resistance has been associated with an alteration in AChE, which arises from point mutations located within the active site gorge of the enzyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.