The novel Ionized Gas Thermoelectric Generator (IG-TEG) system that has been studied theoretically showing capabilities to continually extracting energy from the thermal energy of the ambient air, at low temperatures within the standard room temperature and below. This system does not need a temperature gradient in order to work, unlike the other TEGs that use Seebeck effect, and therefore this new system can be utilized for cooling purposes, by extracting energy instead of wasting energy in compressing the gas for cooling. This novel system was designed based on Static Ratchet Potential (SRP), which is known as a spatially asymmetric electric potential produced by an array of positive and negative electrodes. The ratchet potential produces electrical current from random Brownian Motion of charged particles that are driven by thermal energy. Ratchet potential was studied and investigated by several researches in the fields of sensing and energy harvesting. The main ratchet potential system parameter is the particles transportation, this parameter was studied under the condition of flashing ratchet potentials, and was analyzed based on several methods. In this study, a different approach is pursued to estimate particles transportation, by evaluating the charged particles distribution, and applying the other conditions of the SRP.
The SARS-COV-2 Rapid Detection System is a SARS-COV-2 Electro-Spectroscopy detection system. The preliminary design of this system was studied theoretically in this paper. This system can detect the existence of sub-micro impurity particles in the human exhaled air, based on the unique shape, dimensions and density of these submicro impurities, such as viral particles, including CORONA viruses. This information is carried out by electron current buildup forming Electric Current-Spectrum (ECS) distinguishing the contents of the exhaled air. The design is based on Flashing Ratchet Potential (FRP) and beam of free electrons passing through the electrodes of the FRP. The ECS is characterized by curve deviations caused by interaction of low energy electrons' (-β radiation) with matter, which depends on the matter's shape, dimension and density. This interaction causes a scattering (delaying) or absorption of the electrons by matter, by elastic or inelastic collisions, respectively. The ability of FRP to drift back the delayed electrons to their initial points can be used to characterize the produced ECS. The effect of delayed electrons can be amplified to form a visualized deviation in the ECS by electron multiplication system and can be interpreted into distinguishable SARS-COV-2 Barcodes or Fingerprints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.