Landslides are considered as one of the most devastating natural hazards in Iran, causing extensive damage and loss of life. Landslide susceptibility maps for landslide prone areas can be used to plan for and mitigate the consequences of catastrophic landsliding events. Here, we developed a deep convolutional neural network (CNN–DNN) for mapping landslide susceptibility, and evaluated it on the Isfahan province, Iran, which has not previously been assessed on such a scale. The proposed model was trained and validated using training (80%) and testing (20%) datasets, each containing relevant data on historical landslides, field records and remote sensing images, and a range of geomorphological, geological, environmental and human activity factors as covariates. The CNN–DNN model prediction accuracy was tested using a wide range of statistics from the confusion matrix and error indices from the receiver operating characteristic (ROC) curve. The CNN–DNN model was evaluated comprehensively by comparing it to several state-of-the-art benchmark machine learning techniques including the support vector machine (SVM), logistic regression (LR), Gaussian naïve Bayes (GNB), multilayer perceptron (MLP), Bernoulli Naïve Bayes (BNB) and decision tree (DT) classifiers. The CNN–DNN model for landslide susceptibility mapping was found to predict more accurately than the benchmark algorithms, with an AUC = 90.9%, IRs = 84.8%, MSE = 0.17, RMSE = 0.40, and MAPE = 0.42. The map provided by the CNN–DNN clearly revealed a high-susceptibility area in the west and southwest, related to the main Zagros trend in the province. These findings can be of great utility for landslide risk management and land use planning in the Isfahan province.
Slope stability is one of the most important topics of engineering geology with a background of more than 300 years. So far, various stability assessment techniques have been developed which include a range of simple evaluations, planar failure, limit state criteria, limit equilibrium analysis, numerical methods, hybrid and high-order approaches which are implemented in two-dimensional (2D) and three-dimensional (3D) space. In the meantime, limit equilibrium methods due to their simplicity, short analysis time, coupled with probabilistic and statistics functions to estimate the safety factor (F.S), probable slip surface, application on different failure mechanisms, and varied geological conditions has been received special attention from researchers. The presented paper provides a review to limit equilibrium methods used for discontinuous rock slope stability analyses with different failure mechanisms of natural and cut slopes. The article attempted to provide a systematic review for rock slope stability analysis outlook based on limit equilibrium approaches.
Since December 2019 coronavirus disease (COVID-19) is outbreak from China and infected more than 4,666,000 people and caused thousands of deaths. Unfortunately, the infection numbers and deaths are still increasing rapidly which has put the world on the catastrophic abyss edge. Application of artificial intelligence and spatiotemporal distribution techniques can play a key role to infection forecasting in national and province levels in many countries. As methodology, the presented study employs long short-term memory-based deep for time series forecasting, the confirmed cases in both national and province levels, in Iran. The data were collected from February 19, to March 22, 2020 in provincial level and from February 19, to May 13, 2020 in national level by nationally recognised sources. For justification, we use the recurrent neural network, seasonal autoregressive integrated moving average, Holt winter's exponential smoothing, and moving averages approaches. Furthermore, the mean absolute error, mean squared error, and mean absolute percentage error metrics are used as evaluation factors with associate the trend analysis. The results of our experiments show that the LSTM model is performed better than the other methods on the collected COVID-19 dataset in Iran
This study performs a GIS-based landslide susceptibility assessment using a convolutional neural network, CNN, in a study area of the Gorzineh-khil region, northeastern Iran. For this assessment, a 15-layered CNN was programmed in the Python high-level language for susceptibility mapping. In this regard, as far as the landside triggering factors are concerned, it was concluded that the geomorphologic/topographic parameters (i.e., slope curvature, topographical elevation, slope aspect, and weathering) and water condition parameters (hydrological gradient, drainage pattern, and flow gradient) are the main triggering factors. These factors provided the landside dataset, which was input to the CNN. We used 80% of the dataset for training and the remaining 20% for testing to prepare the landslide susceptibility map of the study area. In order to cross-validate the resulting map, a loss function, and common classifiers were considered: support vector machines, SVM, k-nearest neighbor, k-NN, and decision tree, DT. An evaluation of the results of the susceptibility assessment revealed that the CNN led the other classes in terms of 79.0% accuracy, 73.0% precision, 75.0% recall, and 77.0% f1-score, and, hence, provided better accuracy and the least computational error when compared to the other models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.