Maastrichtian‐early Paleocene foraminiferal palaeobathymetry, palaeodiversity and vertical facies changes of Gebel El Sharawna, south Luxor, Egypt have been studied to determine the depositional sequences, their relationships to global records and/or tectonic signatures. Five benthonic assemblages are recorded and replicated in the present study reflect fluctuation in palaeo‐water depth from restricted marginal marine to outer shelf palaeoenvironments. Four sequence boundaries that coincide with the Campanian/Maastrichtian, intra‐early Maastrichtian, Early/Late Maastrichtian, Cretaceous/Palaeogene (K/Pg) and intra‐Danian were recognized based upon sharp vertical facies changes, foraminiferal assemblage changes, hiatuses, mineral hard ground and reworking. The K/Pg unconformity reveals an unexpected ca. 4.2 Myr time gap as indicated by the absence of the CF2 Zone through lower part of the P1c Zone. It is easily distinguished in the field by conglomeration and winnowing of phosphate and glauconite in the lower Paleocene. These sequence boundaries defined five third‐order depositional sequences mainly developed as the result of the eustatic sea‐level changes, coupled with the Arabian–Nubian shield tectonic uplift at the southern edge of the Tethys Ocean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.