Heart Disease are among the leading cause of death worldwide. The application of artificial neural network as decision support tool for heart disease detection have been previously proposed. However, artificial neural network using conventional back propagation algorithm for error minimization and these algorithm tend to stuck at local minima. This paper proposed the use of flower pollination algorithm as a substitute to conventional back propagation algorithm for error minimization. Heart disease dataset obtain from UCI machine learning repository is used to evaluate the performance of the proposed framework. The results show that the proposed flower pollination neural network able to produce higher classification accuracy compared to the conventional back propagation neural network algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.