Degeneration of cochlear sensory neurons is an important cause of hearing loss, but the mechanisms that maintain the survival of adult cochlear sensory neurons are not clearly defined. We now provide evidence implicating the neuregulin (NRG)-erbB receptor signaling pathway in this process. We found that NRG1 is expressed by spiral ganglion neurons (SGNs), whereas erbB2 and erbB3 are expressed by supporting cells of the organ of Corti, suggesting that these molecules mediate interactions between these cells. Transgenic mice in which erbB signaling in adult supporting cells is disrupted by expression of a dominant-negative erbB receptor show severe hearing loss and 80% postnatal loss of type-I SGNs without concomitant loss of the sensory cells that they contact. Quantitative RT-PCR analysis of neurotrophic factor expression shows a specific downregulation in expression of neurotrophin-3 (NT3) in the transgenic cochleas before the onset of neuronal death. Because NT3 is critical for survival of type I SGNs during development, these results suggest that it plays similar roles in the adult. Together, the data indicate that adult cochlear supporting cells provide critical trophic support to the neurons, that survival of postnatal cochlear sensory neurons depends on reciprocal interactions between neurons and supporting cells, and that these interactions are mediated by NRG and neurotrophins.
In sensorineural hearing loss, hair cell loss is often followed by loss of cochlear nerve fibers, which can continue for years after the insult. The degree and time course of neuronal loss varies, but the reasons for this variation are unclear. The present study addresses this issue with a quantitative analysis of hair cell, supporting cell, and neuronal survival in animals with long-term survival of up to 5.5 years from two types of drug-induced hair cell loss: aminoglycoside antibiotics and platinum-containing chemotherapeutics. To complement the analysis of the effects of organ of Corti damage on neuronal survival, cases of primary neuronal degeneration, via auditory nerve section, are also assessed. Analysis shows that (1) long-term neuronal survival is enhanced when supporting cells in the inner hair cell (IHC) area remain intact; (2) after hair cell loss, the time course of neuronal loss is slower in the apex than in the base; (3) primary loss of cochlear nerve fibers does not lead to secondary degeneration of sensory cells or supporting cells in the organ of Corti; and (4) after auditory nerve section, there can be a massive reinnervation of the IHC region, especially in the apex. Results are consistent with the idea that supporting cells participate in the regulation of neuronal survival and neuronal sprouting in the organ of Corti.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.