In this study, based on multi-access edge computing (MEC), we provided the possibility of cooperating manufacturing processes. We tried to solve the job shop scheduling problem by applying DQN (deep Q-network), a reinforcement learning model, to this method. Here, to alleviate the overload of computing resources, an efficient DQN was used for the experiments using transfer learning data. Additionally, we conducted scheduling studies in the edge computing ecosystem of our manufacturing processes without the help of cloud centers. Cloud computing, an environment in which scheduling processing is performed, has issues sensitive to the manufacturing process in general, such as security issues and communication delay time, and research is being conducted in various fields, such as the introduction of an edge computing system that can replace them. We proposed a method of independently performing scheduling at the edge of the network through cooperative scheduling between edge devices within a multi-access edge computing structure. The proposed framework was evaluated, analyzed, and compared with existing frameworks in terms of providing solutions and services.
Recently, interest in the Cyber-Physical System (CPS) has been increasing in the manufacturing industry environment. Various manufacturing intelligence studies are being conducted to enable faster decision-making through various reliable indicators collected from the manufacturing process. Artificial intelligence (AI) and Machine Learning (ML) have advanced enough to give various possibilities of predicting manufacturing time, which can help implement CPS in manufacturing environments, but it is difficult to secure reliability because it is difficult to understand how AI works, and although it can offer good results, it is often not applied to industries. In this paper, Bidirectional Long Short Term Memory (BI-LSTM) is used to predict process execution time, which is an indicator that can be used as a basis for CPS in the manufacturing process, and the Shapley Additive Explanations (SHAP) algorithm is used to explain how artificial intelligence works. The experimental results of this paper, applying manufacturing data, prove that the results derived from SHAP are effective for workers and AI to collaborate.
Recently, the production environment has been rapidly changing, and accordingly, correct mid term and short term decision-making for production is considered more important. Reliable indicators are required for correct decision-making, and the manufacturing cycle time plays an important role in manufacturing. A method using digital twin technology is being studied to implement accurate prediction, and an approach utilizing process discovery was recently proposed. This paper proposes a digital twin discovery framework using process transition technology. The generated digital twin will unearth its characteristics in the event log. The proposed method was applied to actual manufacturing data, and the experimental results demonstrate that the proposed method is effective at discovering digital twins.
When a consultant of a company that provides a smart factory solution consults with a customer, it is difficult to define the outline of the manufacturing process and create all activities within the process by case. It requires a large amount of resources from the company to perform a task. In this study, we propose a process discovery automation system that helps consultants define manufacturing processes. In addition, for process discovery, a fully attention-based transformer model, which has recently shown a strong performance, was applied. To be useful to consultants, we solved the black box characteristics of the deep learning model applied to process discovery and proposed a visualization method that can be used in the monitoring system when explaining the discovery process. In this study, we used the event log of the metal fabrication process to perform the modeling, visualization, and evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.