This paper presents an efficient numerical integration method for a volume dynamics model in gas turbine engine transient simulations. It is a modified implicit Euler method that allows a time increment that would not be stable with the explicit Euler method. The Jacobian matrix of a nonlinear engine model is evaluated along the steady state engine operation line and scheduled as a function of the corrected shaft speed in advance, eliminating the necessity of computing during the simulation. The proposed method was applied to transient simulations of a compressor rig test model composed of a compressor, a nozzle with variable geometry and a volume placed between them. The eigenvalues of the simplified volume dynamics were analytically derived. It is shown that they are functions of the characteristic time of the volume defined by mass present in the volume divided by mass flow rate flowing into and out of the volume and dimensionless influence coefficients of nearby components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.