Real-world scenes always exhibit objects with clutter backgrounds, posing great challenges for deep salient object detection models. In this paper, we propose salient object detection by engaging two saliency cues, i.e., the part-whole hierarchies and contrast cues, resulting in a PWHCNet. Specifically, two branches, which consists of a Dynamic Grouping Capsules (DGC) branch and a DenseHRNet branch, are put in place to learn the part-whole hierarchies and contrast cues, respectively. Moreover, to help highlight the whole salient object in complex scenes, a Background Suppression (BS) module is proposed to guide the shallow features of DenseHRNet with the aid of the partwhole relational cues captured by DGC. Subsequently, these two saliency cues are integrated via a Self-Channel and Mutual-Spatial (SCMS) attention mechanism. Experimental results on five benchmarks demonstrate that the proposed PWHCNet achieves state-of-the-art performance while obtaining the whole salient objects with fine details.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.