Testicular rupture, one of the most common complications in blunt scrotal trauma, is the rupture of tunica albuginea and extrusion of seminiferous tubules. Testicular rupture is more inclined to young men, and injury mechanisms are associated with sports and motor accidents. After history taking and essential physical examination, scrotal ultrasound is the first-line auxiliary examination. MRI is also one of the vital complementary examinations to evaluate testicular rupture after blunt scrotal trauma. Surgical exploration and repair may be necessary when the diagnosis of testicular rupture is definite or suspicious. Postoperative follow-up is to monitor the relief of local symptoms and changes of testicular functions. This review sums up the literatures about testicular rupture after blunt scrotal trauma in recent 16 years and also refers some new advantages and perspectives on diagnosis and management of testicular rupture.
ObjectiveThe aim of this study was to investigate the effects of vascular endothelial growth factor A (VEGFA) on cell proliferation, apoptosis, migration, and invasion in renal clear cell carcinoma (RCCC).MethodsBetween June 2012 and June 2015, RCCC tissues were obtained for the experimental group, and RCCC adjacent tumor-free kidney parenchyma tissues were obtained for the control group. VEGFA mRNA and protein expressions and phosphoinositide 3-kinase, serine/threonine-specific protein kinase (AKT), and phosphorylated-AKT protein expressions were detected. The chemically synthesized specific siRNA using RNA interference technology was used to inhibit VEGFA gene expression in human RCCC 786-O cells. The negative control (NC) group was transfected with NC sequence, and the blank group was transfected with no sequence. Flow cytometry, scratch test, and cell-penetrating experiment were used to detect cell proliferation, apoptosis, migration, and invasion of 786-O cells.ResultsPositive expression of VEGFA protein was 60.62% in RCCC tissue and 18.34% in adjacent tissue with statistically significant difference (P<0.001). VEGFA protein and mRNA expressions were higher in RCCC tissue than those in adjacent tissue (both P<0.01). VEGF expression in RCCC tissue was associated with Fuhrman grading and American Joint Committee on Cancer staging (both P<0.05). After RCCC 786-O cells transfecting the VEGFA siRNA, the VEGFA mRNA and protein expressions and phosphoinositide 3-kinase and phosphorylated-AKT protein expressions were significantly decreased, cell proliferation was remarkably inhibited, cell apoptotic ratio was obviously increased, and migration distance and invasive cell number were markedly decreased compared to those in the NC group and the blank group (all P<0.05).ConclusionInhibition of VEGFA inhibited proliferation, promoted apoptosis, and suppressed migration and invasion of RCCC 786-O cells. VEGF has a potential role in diagnosis and therapy of RCCC.
Abnormal activation of signal transducer and activator of transcription 3 (STAT3) has been found in various types of human cancers, including bladder cancer (BC). In our study, we examined the regulation of STAT3 posttranslational modifications (PTMs) and found that SENP3 is high in bladder cancer. Sentrin/SUMO-specific protease3 (SENP3) and STAT3 were highly expressed in BC tissues when compared with tissue adjacent to carcinoma. SENP3 induced STAT3 protein level and p-STAT3 translocating into nuclear through deSUMOylation of STAT3. Further, nuclear STAT3, as a transcriptional activity factor, promoted pyrroline-5-carboxylate reductase 1 PYCR1 gene and protein level by interacting with the promoter of (PYCR1). Next, we found that knockdown of PYCR1 inhibited Epithelial to mesenchymal transition of bladder cancer, and simultaneously mitigated the carcinogenic effects of STAT3. In vitro, STAT3 knockdown in bladder cancer cells inhibited cell proliferation, migration, and invasion. In contrast, SENP3 overexpression reversed these effects. In all, results lend novel insights into the regulation of STAT3, which has key roles in bladder cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.