In recent years, the effect of formaldehyde on microorganisms and body had become a global public health issue. The multistage combination of anaerobic and aerobic process was adopted to treat paraformaldehyde wastewater. Microbial community structure in different reaction stages was analyzed through high-throughput sequencing. Results showed that multistage A-O activated sludge process positively influenced polyformaldehyde wastewater. The removal rates of formaldehyde were basically stable at more than 99% and those of COD were about 89%. Analysis of the microbial diversity index indicated that the microbial diversity of the reactor was high, and the treatment effect was good. Moreover, microbial community had certain similarity in the same system. Microbial communities in different units also showed typical representative characteristics affected by working conditions and influent concentrations. Proteobacteria, Firmicutes, and Bacteroidetes were the dominant fungal genera in the phylum level of community composition. As to family and genus levels, Peptostreptococcaceae was distributed at various stages and the dominant in this system. This bacterium also played an important role in organic matter removal, particularly decomposition of the acidified middle metabolites. In addition, Rhodobacteraceae and Rhodocyclaceae were the formaldehyde-degrading bacteria found in the reactor.
This paper describes the total nitrogen balance, and the direction and degree of nitrogen transformation during the nitrification process of coking wastewater. According to the actual nitrification process, the conventional nitrification kinetic equation was amended. After 48 h of nitrification, the total nitrogen content remained almost the same with error less than 0.6%. The total removal efficiency of NH4(+)-N was 91.1%, in which blow-off, producing cells and transforming to nitrate nitrogen accounted for 1.1, 17.8 and 72.2% respectively. Considering the influences of NH4(+)-N blow-off and conversion from cyanide, thiocyanide and organic nitrogen, the nitrification kinetic equation was amended as μ'=0.82·S/(0.48+S).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.