A multi-scale UAV aerial image object detection model MS-YOLOv7 based on YOLOv7 was proposed to address the issues of a large number of objects and a high proportion of small objects that commonly exist in the Unmanned Aerial Vehicle (UAV) aerial image. The new network is developed with a multiple detection head and a CBAM convolutional attention module to extract features at different scales. To solve the problem of high-density object detection, a YOLOv7 network architecture combined with the Swin Transformer units is proposed, and a new pyramidal pooling module, SPPFS is incorporated into the network. Finally, we incorporate the SoftNMS and the Mish activation function to improve the network’s ability to identify overlapping and occlusion objects. Various experiments on the open-source dataset VisDrone2019 reveal that our new model brings a significant performance boost compared to other state-of-the-art (SOTA) models. Compared with the YOLOv7 object detection algorithm of the baseline network, the mAP0.5 of MS-YOLOv7 increased by 6.0%, the mAP0.95 increased by 4.9%. Ablation experiments show that the designed modules can improve detection accuracy and visually display the detection effect in different scenarios. This experiment demonstrates the applicability of the MS-YOLOv7 for UAV aerial photograph object detection.
Hedge detection is used to distinguish uncertain information from facts, which is of essential importance in biomedical information extraction. The task of hedge detection is often divided into two subtasks: detecting uncertain cues and their linguistic scope. Hedge scope is a sequence of tokens including the hedge cue in a sentence. Previous hedge scope detection methods usually take all tokens in a sentence as candidate boundaries, which inevitably generate a large number of negatives for classifiers. The imbalanced instances seriously mislead classifiers and result in lower performance. This paper proposes a dependency-based candidate boundary selection method (DCBS), which selects the most likely tokens as candidate boundaries and removes the exceptional tokens which have less potential to improve the performance based on dependency tree. In addition, we employ the composite kernel to integrate lexical and syntactic information and demonstrate the effectiveness of structured syntactic features for hedge scope detection. Experiments on the CoNLL-2010 Shared Task corpus show that our method achieves 71.92% F1-score on the golden standard cues, which is 4.11% higher than the system without using DCBS. Although the candidate boundary selection method is only evaluated on hedge scope detection here, it can be popularized to other kinds of scope learning tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.