We analyzed mutations and gene copy number changes in nontumor, IEN, and ESCC samples, collected from 70 patients. IEN and ESCCs each had similar mutations and markers of genomic instability, including apolipoprotein B messenger RNA editing enzyme, catalytic polypeptide-like. Genomic changes observed in precancerous lesions might be used to identify patients at risk for ESCC.
Involving the fathers in breastfeeding education could improve the exclusive breastfeeding rate and prolong the duration of exclusive breastfeeding. The mothers appreciated support from the fathers.
BackgroundLoss of STAT1 (Signal Transducer and Activator of Transcription-1) has been implicated in the pathobiology of a number of cancer types. Nonetheless, the biological and clinical significance of STAT1 in esophageal squamous cell carcinomas (ESCC) has not been comprehensively studied.MethodsUsing immunohistochemistry, we detected the STAT1 expression in a cohort of ESCC patients; In-vitro experiments, we used enforced gene transfection of STAT1C into two STAT1- weak/negative ESCC cell lines and siRNA knockdown of STAT1 in two STAT1-strong ESCC cell lines to detect STAT1 function in ESCC.ResultsWe found that the expression of STAT1 was heterogeneous in ESCC, with 64 (49.0%) strongly positive cases, 59 (45.0%) weakly positive cases and 8 (6.1%) negative cases. STAT1 expression inversely correlated with the depth of tumor invasion and tumor size (p=0.047 and p=0.029, respectively, Chi square). Furthermore, patients with STAT1-strong/weak tumors had a significantly longer survival compared to those with STAT1-negative tumors (33.6 months versus 13.1 months, p=0.019). In patients carrying tumors of aggressive cytology (n=50), those with STAT1-strong tumors survived significantly longer than those with STAT1-weak/negative tumors (34.6 months versus 20.5 months, p=0.011). Our in-vitro experiments revealed that STAT1 is proapoptotic and inhibitory to cell-cycle progression and colony formation. Lastly, we found evidence that STAT1 signaling in ESCC cells down-regulated the expression and/or activity of NF-κB and STAT3, both of which are known to have oncogenic potential.ConclusionTo conclude, our findings suggest that STAT1 is a tumor suppressor in ESCC. Loss of STAT1, which is frequent in ESCC, contributes to the pathogenesis of these tumors.
ObjectivesThe purpose of our study is to investigate whether diffusion-weighted imaging (DWI) is useful for monitoring the therapeutic response after neoadjuvant chemotherapy in osteosarcoma of long bones.Materials and methodsConventional magnetic resonance imaging (MRI) and DWI were obtained from 35 patients with histologically proven osteosarcomas. MR examinations were performed in all patients before and after 4 courses of preoperative neoadjuvant chemotherapy. Apparent diffusion coefficients (ADC) were measured. The degree of tumor necrosis was assessed macroscopically and histologically by two experienced pathologists after operation. Student’s t test was performed for testing changes in ADC value. Pearson’s correlation coefficient was used to estimate the correlation between necrosis rate and post- neoadjuvant chemotherapy ADC values. P<0.05 was considered to denote a significant difference.ResultsThe difference of the whole osteosarcoma between pre- neoadjuvant chemotherapy ADC value (1.24±0.17×10−3 mm2/s) and post- (1.93±0.39×10−3 mm2/s) was significant difference (P<0.01). Regarding in patients with good response, the post- neoadjuvant chemotherapy values were significantly higher than the pre- neoadjuvant chemotherapy values (P<0.01). The post- neoadjuvant chemotherapy ADC value in patients with good response was higher than that of poor response (t = 8.995, P<0.01). The differences in post- neoadjuvant chemotherapy ADC between viable (1.03±0.17×10−3 mm2/s) and necrotic (2.38±0.25×10−3 mm2/s) tumor was highly significant (t = 23.905, P<0.01). A positive correlation between necrosis rates and the whole tumor ADC values (r = 0.769, P<0.01) was noted, but necrosis rates were not correlated with the ADC values of necrotic (r = −0.191, P = 0.272) and viable tumor areas (r = 0.292, P = 0.089).ConclusionsDWI can identify residual viable tumor tissues and tumor necrosis induced by neoadjuvant chemotherapy in osteosarcoma. The ADC value can directly reflect the degree of tumor necrosis, and it is useful to evaluate the preoperative neoadjuvant chemotherapy response in patients with osteosarcoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.