Working muscle conserves adenosine triphosphate (ATP) for muscle contraction by attenuating protein synthesis through several different pathways. Regulated in development and DNA damage response 1 (REDD1) is one candidate protein that can itself attenuate muscle protein synthesis during muscle contraction. In this study, we investigated whether endurance exercise induces REDD1 expression in association with decreased mammalian target of rapamycin (mTOR) complex I (mTORC1) signaling and global protein synthesis in rat skeletal muscle. After overnight fasting, rats ran on a treadmill at a speed of 28 m/min for 60 min, and were killed before and immediately, 1, 3, 6, 12, and 24 h after exercise. REDD1 mRNA and corresponding protein levels increased rapidly immediately after exercise, and gradually decreased back to the basal level over a period of 6 h in the gastrocnemius muscle. Phosphorylation of mTOR Ser2448 and S6K1 Thr389 increased with the exercise, but diminished in 1–3 h into the recovery period after cessation of exercise. The rate of protein synthesis, as determined by the surface sensing of translation (SUnSET) method, was not altered by exercise in fasted muscle. These results suggest that REDD1 attenuates exercise‐induced mTORC1 signaling. This may be one mechanism responsible for blunting muscle protein synthesis during exercise and in the early postexercise recovery period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.