Rollers are an integral part of a hot-rolling steel mill. They transport hot metal from one end of the mill to another. The quality of the steel highly depends on the surface quality of the rollers. This paper presents semi-automated methodologies to extract roller parameters from terrestrial
lidar points. The procedure was divided into two steps. First, the three-dimensional points were converted to a two-dimensional image to detect the extents of the rollers using fast Fourier transform image matching. Lidar points for every roller were iteratively fitted to a circle. The radius
and center of the fitted circle were considered as the average radius and average rotation axis of the roller, respectively. These parameters were also extracted manually and were compared to the measured parameters for accuracy analysis. The proposed methodology was able to extract roller
parameters at millimeter level. Erroneously identified rollers were identified by moving average filters. In the second step, roller parameters were determined using the filtered roller points. Two data sets were used to validate the proposed methodologies. In the first data set, 366 out of
372 rollers (97.3%) were identified and modeled. The second, smaller data set consisted of 18 rollers which were identified and modelled accurately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.